

# TechnipFMC's SFT<sup>®</sup> Radiant Coil Technology

Dr. Marco VAN GOETHEM – Manager Product Development 13 February 2019, Bahrain

#### Swirl Flow Tube®



#### What is the connection?



This document and all information herein are confidential, and may not be used, reproduced or distributed without prior authorization of TechnipFMC.

#### An Overview

- First application in medical field
- 2010: TechnipFMC acquires IP rights for Cracking Coil application



Geometry defined by:

| ID        | = Inside diameter |
|-----------|-------------------|
| Pitch     | = Helix Pitch     |
| Amplitude | = Helix Amplitude |



Helical tubes of different amplitudes and pitches with line of sight through the helical tubes



\* Veryan Medical Limited: BioMimics 3DTM



## **Benefits**

- Increased heat transfer with low pressure drop penalty.
- Higher heat transfer will bring amongst others:
  - Higher capacity
  - Longer run length
  - Higher selectivity
- The technology is suitable for revamping of furnaces or new installations.





# Protocol to first application

- Computer simulations
- Experimental validation
- Pilot scale
- Prototype manufacturing
- First application



# SFT CFD Model Validation



# **Pressure Drop Validation**





# **Pressure Drop Validation**



#### → CFD pressure drop model validated

\* Chen equation at 34µm roughness



### Heat Transfer Validation





#### Heat Transfer Validation



#### → CFD heat transfer model validated

\* As per VDI Wärme Atlas



This document and all information herein are confidential, and may not be used, reproduced or distributed without prior authorization of TechnipFMC.

# **Pilot Plant Performance**



#### Coking Validation Pilot Plant Test at University of Ghent

- Validate coking behavior of the SFT coils
- Two coil types
  - Straight
  - SFT
- Tested with ethane and naphtha feed





# Pilot Plant Test: Relative Coking Rates

 $\rightarrow$  Substantially lower coking rates observed due to

- Lower wall temperature
- Increased turbulence





# Application Options of SFT



### Performance

| IMPROVEMENT OPTIONS |                                       |  |  |
|---------------------|---------------------------------------|--|--|
| Longer run length   | At same severity and feed rate        |  |  |
| Higher capacity     | At same severity and run length       |  |  |
| Higher selectivity  | At same feed flow rate and run length |  |  |



# Longer Run Length Case Study

- Yields and pressure drop are hardly affected
- Lower TMT after 50
  days
- Longer run length at same capacity

| Longer Run Length                   | BARE  |         | SFT®  |           |
|-------------------------------------|-------|---------|-------|-----------|
|                                     | SOR   | 50 days | SOR   | 50 days   |
| Base Naphtha feed rate, t/h         | 40.5  |         | 40.5  |           |
| DS                                  | 0.5   |         | 0.5   |           |
| Max. TMT, °C                        | 1033  | 1091    | 1004  | 1059      |
| Coil ∆P, bar                        | 0.47  | 1.04    | 0.59  | 1.02      |
| Yields, wt.% (dry)                  |       |         |       |           |
| Ethylene                            | 35.14 | 34.32   | 34.99 | 34.31     |
| Propylene                           | 13.7  | 13.38   | 13.64 | 13.38     |
| Ultimate Ethylene production, kta * | 130.8 | 128.8   | 130.4 | 128.7     |
| EOR @ TMT =1091 °C                  |       | 50 days |       | >120 days |

\*Based on 8400 operating hours per year



# Longer Run Length Case Study





# Higher Capacity Case Study

| Higher Capacity                     | SFT®    | BARE    |
|-------------------------------------|---------|---------|
|                                     | SOR     | SOR     |
| Base Naphtha feed rate, t/h         | 47.1    | 40.5    |
| DS                                  | 0.5     | 0.5     |
| Max. TMT, °C                        | 1022    | 1033    |
| Coil ∆P, bar                        | 0.75    | 0.47    |
| Yields, wt.% (dry)                  |         |         |
| Ethylene                            | 34.99   | 35.14   |
| Propylene                           | 13.65   | 13.7    |
| Ultimate Ethylene production, kta * | 152.0   | 130.8   |
| Ethylene production increase        | 16%     | base    |
| EOR @ TMT =1091 °C                  | 50 days | 50 days |

#### → 16% capacity increase

\*Based on 8400 operating hours per year



# SFT Application for Higher Capacity

SMK<sup>™</sup> Gas Cracker



#### **Design Parameters**

- Application of SFT for capacity increase
- Gas feedstock
- TechnipFMC's proprietary SMK<sup>™</sup> radiant coil technology
- Outlet leg 35Cr45NiNb-MA material
- ID of 100mm





# Engineering

- Executed adequacy check of desired capacity increase
- Design of the SFT using TechnipFMC's standard engineering practices and tools, such as SPYRO® Suite 7
- Outcome to obtain capacity increase :
  - Re-rating of some convection sections
  - 4th leg of SMK<sup>™</sup> coil equipped with SFT-H



## Fabrication

- TechnipFMC has developed its own bending technology and tooling
- Centrifugal casted tubes are shaped into helical tubes by induction bending
- Quality control according ASME/ASTM standards (thinning, ovality, DPI, material properties: creep, tensile, composition)
- TechnipFMC developed procedures to safe guard quality during bending, assembly and installation.





#### Assembly

- SFT radiant coil pass is an assembly of helical tubes in stead of straight tubes
- TechnipFMC has successfully completed manufacturing 200 SFT® sections
- Assembly of 44 outlet legs (4th pass) for world's largest SMK<sup>™</sup> coil





## Installation/Performance

- SFT installation similar to standard recoiling
- No modification required to spring hanger system
- SFT tubes have been installed in May 2017
- Results are promising:
  - more than double of Run length
  - Performing better than expected
  - Realized anticipated capacity increase





# Conclusions



## Conclusion

- Successfully validated
- Reduced coking behavior
- SFT is superior to alternative technologies
- Better heat transfer can be exploited to increase:
  - Run length
  - Capacity
- Ready for application:
  - Revamps as well as new furnaces
  - First implementation in operation
  - · Second and third fabricated
  - Fourth application in fabrication



#### → SFT is the best heat transfer enhancement technology available





This document and all information herein are confidential, and may not be used, reproduced or distributed without prior authorization of TechnipFMC.