

Sustaining Olefins Production Through Optimization And Effective Feed Management

Nihar Gulwadi, Vilas Kolate, Nishat Patil Ingenero Inc, USA

MANAGING CHANGING FEEDSTOCK Feb13<sup>th</sup>, 2019



### **Punch Line and Challenges for Operations**

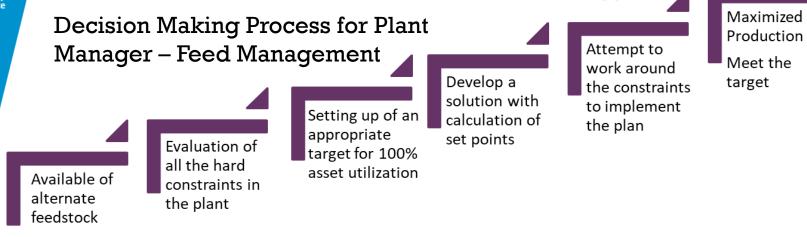
### PUNCH LINES

- □ Keep Producing...No Matter What..!
- □ Stay Efficient...! (Energy, Chemicals, Raw Materials)
- □ Reduce losses..! (Flaring, Waste Water)

Challenges

- Dynamic Nature of the plant
- □ Change in availability of feedstock
- Change in equipment health
- Unavailability of equipment due to maintenance or reliability
- □ Resources

Everyday decision making involves evaluating multiple parameters (process, mechanical, operations) to run the plant with the targets set.




# **NEED for Effective Feed Management**

- Critical challenge for operating plants in the region is uncertainty in availability of feed
- More the flexibility in feed more the uncertainty faced by the unit
- Primary target for any plant is to keep producing the most with available feedstock
- Various aspects to consider
  - Plant Infrastructure
  - Type of Feed processing know-hows
  - Use of economics in coordination with business plan
  - Customer requirement at downstream
- Optimizing the plant within these constraints to achieve a particular objective function becomes important



# **Decision Process – Feed Management**



- Time for decision making is short and critical increasing chances of missing on an important constraint; resulting in suboptimal plan
- Conclusive role of Plant Operation Engineer is essential in decision making
- Lower supply of a particular feedstock should not be an obstacle in achieving the production goal
- Instead, optimized processing aiming maximum asset utilization enables leveraging of different feedstocks available

Leveraging the availability of alternate feeds open window for optimized operation through utilization of data intelligence tools



# **Decision Support Tool - Conceptualization**

- Automating the decision making process ensures all constraints are accounted for while achieving global optima on the target set
- Easier, faster way of developing a plan to manage various situations with feedstock availability
- Allows what-if to simulate and plan for situations that may arise in the future and also allows audit of the situations in the past to allow better understanding and learning
- □ A simple uncomplicated tool would make decision making in operations easier but at the same time more accurate



- □ A tool was developed to address this need for a Ethylene Plant
- Excel is easy to use; every engineer can use excel without much training; also allows user to modify the UI for his own need
- Allows various objective function to simulate variety of targets set for operations
- All mechanical, equipment, business aspects included in form of constraints
- Allows optimization to achieve target within the boundaries set for each manipulated variable

# **Decision Support Tool - Features**

**Objective function**: Allows various objective functions to be optimized

- Maximum or Specified Ethylene Production rate
- Maximum Ethylene while achieving specified/planned Propylene
- Maximum or Specified Propylene Production rate
- Maximum Ethylene and Propylene Production rate (E+P)
- Maximum Plant Contribution USD
- Maximum or minimum byproduct flows apart from Ethylene and Propylene such as C4M, 1,3 BD, recycle flow, residue gas keeping plant contribution high.

Configurational Inputs: Allows specifying configurational aspects of the plant based on mode of operation or availability of major equipment

- Number of furnaces in operation
- Feed conversion
- Losses in recycle or products
- Plant Contribution
- Cost of raw material and products

#### **Constraints**:

Ethylene Middle East Technology

- Upper and Lower limit of various critical parameters to indicate the capability of each equipment and business case for the plant
- Limits are estimated based on design data, data analytics, plant operating cases and users' operation experience.

## **Decision Support Tool - Development**

Analysis of the Design Data for the plant to develop configurational constraints

- PFD, PID
- Equipment Datasheets
- Design & Operating Data HMB

□ Furnace Effluent Prediction Model (Statistical)

- Data from yield Prediction model
- Design data
- Actual Online/Lab analysis data
- Define and estimate unit constraints
  - Involves statistical approach and plant operational inputs based on the way how plant was operated/some identified boundaries/limits

Plant recovery model based on available cases

□ Estimation of major stream flow rate –wherever required

- Products balancing and validation with actual
- Product and raw material pricing
- Defining Objective Functions
- □ Use of solver (GRG Nonlinear) with objective function
- □ Validation of optimized variables

### **Decision Support Tool – Using the Tool**

#### Define Inputs –

- Feed composition wt% -Each stream
- External Feed/Supplementary feed and composition
- Recycle or losses or key component loss in products
- Selectivity/conversion of reactors
- No of furnace on specific feed

|                     |                    |         | (        | OLEFINS INPUT DATA     |                    |       |
|---------------------|--------------------|---------|----------|------------------------|--------------------|-------|
| Fee                 | d Characterization |         |          | Operating conditions   |                    |       |
|                     | NGL FEED           | 400     | TPD      | 1 0                    |                    |       |
|                     |                    | 16667   | Kg/h     | No. of furnaces        | 7                  |       |
| Analyzer/Lab        | <b>Composition</b> | Nor Com | <u>p</u> |                        |                    |       |
| 0.96                | Methane            | 1.0     | wt%      | Passes on Ethane       | 6.0                |       |
| 67.41               | Ethane             | 67.4    | wt%      | Flow per Pass          | 9453               | kg/hr |
| 24.67               | Propane            | 24.7    | wt%      |                        |                    |       |
| 3.8                 | i-C4               | 3.8     | wt%      | Passes on Propane      | 36                 |       |
| 2.89                | n-C4               | 2.9     | wt%      | Flow per Pass          | 7809               | kg/hr |
| 0.27                | C5                 | 0.3     | wt%      |                        |                    |       |
| 100.00              |                    |         |          |                        |                    |       |
|                     | PURE PROPANE       |         | tpd      | Conversion %           |                    |       |
|                     |                    | 239611  | kg/hr    | Ethane                 | 65.0%              |       |
| <u>Analyzer/Lab</u> |                    | Nor Com |          |                        |                    |       |
| 0                   | Methane            | 0       | wt‰      | Propane                | 87.0%              |       |
| 0.5                 | Ethane             | 0.5     | wt%      |                        |                    |       |
| 98                  | Propane            | 98      | wt%      |                        |                    |       |
| 0.7                 | i-C4               | 0.7     | wt%      | Hydrogenation          |                    |       |
| 0.8                 | n-C4               | 0.8     | wt‰      | C2 hdn selectivity     | <mark>50.0%</mark> |       |
| 0                   | C5                 | 0       | wt‰      | C3 hdn selectivity     | <mark>60.0%</mark> |       |
| 0                   | Propylene          | 0       | wt‰      | MAPD conversion        | 90.0%              |       |
| 100.00              |                    |         |          |                        |                    |       |
|                     | PURE ETHANE        | 199.1   | tpd      | Recovery model         |                    |       |
|                     |                    | 8297    | kg/hr    | Ethylene loss in R.G.  | 2000               | ppmv  |
| <u>Analyzer/Lab</u> |                    | Nor Com |          | Ethylene in C2 spl bot | 3                  | wt%   |
| 0                   | Methane            | 0       | wt%      | Ethane in ethylene     | 100                | ppm w |
| 100                 | Ethane             | 100     | wt‰      | C4 loss in DP o/h      | 1.5                | wt%   |
| О                   | Propane            | 0       | wt‰      |                        |                    |       |
| 0                   | i-C4               | 0       | wt%      | Propane in propylene   | 5000               | ppm w |
| 0                   | n-C4               | 0       | wt%      |                        |                    |       |
| 100.00              | C5                 | 0       | wt%      |                        |                    | _     |

## **Decision Support Tool – Using the Tool**

#### □ Define Constraints and Objective Function in the Solver

| OLEFIN P                        |                | ISTRAINTS             |                  |
|---------------------------------|----------------|-----------------------|------------------|
|                                 | <u>Minimum</u> | Desired value-Present | Maximum          |
| Furnaces                        |                |                       |                  |
| Flow per Pass for Ethane Kg/h   | 3500           | 9453                  | 9500             |
| Flow per Pass for Propane Kg/h  | 3500           | 7809                  | 9500             |
| No. Passses on Ethane No        | 6              | 6                     | 6                |
| Ethane conversion %             | 45.0%          | 65.0%                 | 65.0%            |
| Propane conversion %            | 80.0%          | 87.0%                 | 87.0%            |
|                                 | •              | 400                   | 100              |
| NGL Feed Kg/h                   | 0              | 400                   | 400              |
| Pure Propane Feed Kg/h          | 0              | 5751                  | 7193             |
| Pure Ethane Feed Kg/h           | 0              | 199                   | 400              |
| No of furnace to be operate No  | 7              | 7                     | 7                |
| Compressor 3rd Stage disc '°C   |                | 45000                 | 15000            |
| CGC molar flow KgMol            |                | 15009                 | 15009            |
| Total Propane Kg/h              | 0              | 281123                | 350000           |
| CGC Mass flow Kg/h              | 100            | 337942                | 361477           |
| DMS+DM Bottom Kg/h              | 0              | 250857                | 275204           |
| H2 mole % in Residue Gas Mol%   | 30.0%          | 40.0%                 | 40.0%            |
| Methane mole % in Residue Mol%  | 50.0%          | 59.7%                 | 70.0%            |
| C2 splitter Feed Kg/h           | 0              | 155396                | 177170           |
| Depropanizer feed Kg/h          | 0              | 105590<br>84431       | 172205<br>120000 |
| Propylene Splitter Feed Kg/h    | 0              | 21219                 | 25000            |
| Debutanizer Kg/h                | 0              | 5718                  | 25000<br>70000   |
| Condensate Stripperbtm flo Kg/h | 0              | 14580                 | 20000            |
| Gasoline fractionator Kg/h      | 0              | 0.0                   | 20000<br>10      |
| Propylene in C3 spl bottom Kg/h | 40             | 55.6                  | 80               |
| DP Flooding                     | 40             | 55.0                  | 00               |
|                                 |                |                       |                  |
| Products                        |                |                       |                  |
| Max. Ethylene                   | 0              | 119326                | 123000           |
| Max. Propylene                  | Ő              | 46579                 | 58000            |
| Max. Mixed C4 product           | 0              | 11777                 | 12000            |
| Max. Residue gas                | Õ              | 76634                 | 85000            |
| maa neolette gao                | U U            | 10001                 |                  |

|                                                                | SVS14               |                     |                                            | 1                 |
|----------------------------------------------------------------|---------------------|---------------------|--------------------------------------------|-------------------|
| Го: () <u>М</u> ах                                             | () Mi <u>n</u>      | ○ <u>V</u> alue Of: | 2050                                       |                   |
| <u>By</u> Changing Variabl                                     | e Cells:            |                     |                                            |                   |
| \$G\$36,\$G\$37,\$G\$38,                                       | \$G\$39,\$G\$40,\$G | \$41,WBINTC2zones   | , <b>\$G\$4</b> 3                          | 1                 |
| Subject to the Const                                           | raints:             |                     |                                            |                   |
| \$G\$43 >= \$N\$28<br>\$N\$6 <= \$O\$6                         |                     |                     | ^                                          | <u>A</u> dd       |
| \$N\$14 <= \$O\$14<br>\$O\$11 <= \$P\$11<br>\$O\$12 <= \$P\$12 |                     |                     |                                            | <u>C</u> hange    |
| \$O\$12 >= \$N\$12<br>\$O\$11 >= \$N\$11<br>\$O\$13 >= \$N\$13 |                     |                     |                                            | <u>D</u> elete    |
| \$O\$14 <= \$P\$14<br>\$O\$14 <= \$P\$14<br>\$O\$16 <= \$P\$16 |                     |                     |                                            | <u>R</u> eset All |
| \$0\$17 > = \$N\$17<br>\$0\$19:\$0\$27 > = \$N                 | I\$19:\$N\$27       |                     | ~                                          | Load/Save         |
| 🗹 Ma <u>k</u> e Unconstrai                                     | ined Variables N    | on-Negative         |                                            |                   |
| S <u>e</u> lect a Solving Met                                  | hod: G              | RG Nonlinear        | ~                                          | O <u>p</u> tions  |
| Solving Method                                                 |                     |                     |                                            |                   |
|                                                                | linear Solver Pro   |                     | hat are smooth non<br>he Evolutionary engi |                   |
|                                                                |                     |                     |                                            |                   |

### **Decision Support Tool – Using the Tool**

#### Tool Output

- Optimize Objective Functions
- Limiting constraints values/status
- Product Flows

#### PRODUCTS FLOWS (Kg/h)

| Fuel gas generated   | 78638  |           |
|----------------------|--------|-----------|
| CH4 product          | 250    |           |
| Ethylene             | 120352 | Obj Funct |
| Ethane recycle       | 32282  |           |
| Propylene            | 45723  | Obj Funct |
| Propane recycle      | 36055  |           |
| C4 mix product       | 11999  |           |
| <b>Rich Aromatic</b> | 12067  |           |
| Mixed oil            | 3339   |           |
| Ethylene+Propylene   | 166075 | Obj Funct |
| Contribution MUSD    |        | Obj Funct |
|                      |        |           |

| DESIRED OPTIMIZ         | ING VARIA | BLES |
|-------------------------|-----------|------|
| NO OF FURNACE OPR       | 7         | UNIT |
| NGL FEED INTAKE         | 0         | TPD  |
| PURE PROPANE INTAKE     | 6041      | TPD  |
| PURE ETHANE INTAKE      | 400       | TPD  |
| ETHANE CONV             | 68.0%     | %    |
| PROPANE CONVERSION      | 88.0%     | %    |
| PASSES ON ETHANE        | 6         | UNIT |
| PROPYLENE IN C3 SPL BOT | 2.0       | wt%  |
| TOTAL CONTRIBUTION      | 213.6     | M US |

| OLEFIN PLANT CONSTRAINTS        |       |                       |                |  |  |
|---------------------------------|-------|-----------------------|----------------|--|--|
| 022111112                       |       | Desired value-Present | <u>Maximum</u> |  |  |
| Furnaces                        |       |                       |                |  |  |
| Flow per Pass for Ethane Kg/h   | 3500  | 9453                  | 9500           |  |  |
| Flow per Pass for Propane Kg/h  | 3500  | 7809                  | 9500           |  |  |
| No. Passses on Ethane No        | 6     | 6                     | 6              |  |  |
| Ethane conversion %             | 45.0% | 65.0%                 | 65.0%          |  |  |
| Propane conversion %            | 80.0% | 87.0%                 | <b>87.0%</b>   |  |  |
| -                               |       |                       |                |  |  |
| NGL Feed Kg/h                   | 0     | 400                   | 400            |  |  |
| Pure Propane Feed Kg/h          | 0     | 5751                  | 7193           |  |  |
| Pure Ethane Feed Kg/h           | 0     | 199                   | 400            |  |  |
| No of furnace to be operate No  | 7     | 7                     | 7              |  |  |
| Compressor 3rd Stage disc °C    |       |                       |                |  |  |
| CGC molar flow KgMol/           | 2500  | 15009                 | 15009          |  |  |
| Total Propane Kg/h              | 0     | 281123                | 350000         |  |  |
| CGC Mass flow Kg/h              | 100   | 337942                | 361477         |  |  |
| DMS+DM Bottom Kg/h              | 0     | 250857                | 275204         |  |  |
| H2 mole % in Residue Gas Mol%   | 30.0% | 40.0%                 | 40.0%          |  |  |
| Methane mole % in Residue Mol%  | 50.0% | 59.7%                 | 70.0%          |  |  |
| C2 splitter Feed Kg/h           | 0     | 155396                | 177170         |  |  |
| Depropanizer feed Kg/h          | 0     | 105590                | 172205         |  |  |
| Propylene Splitter Feed Kg/h    | 0     | 84431                 | 120000         |  |  |
| Debutanizer Kg/h                | 0     | 21219                 | 25000          |  |  |
| Condensate Stripperbtm flo Kg/h | 0     | 5718                  | 70000          |  |  |
| Gasoline fractionator Kg/h      | 0     | 14580                 | 20000          |  |  |
| Propylene in C3 spl bottom Kg/h | 0     | 0.0                   | 10             |  |  |
| DP Flooding                     | 40    | 55.6                  | 80             |  |  |
|                                 |       |                       |                |  |  |
|                                 |       |                       |                |  |  |
| Products                        | •     | ( ( 00 00             | 400000         |  |  |
| Max. Ethylene                   | 0     | 119326                | 123000         |  |  |
| Max. Propylene                  | 0     | 46579                 | 58000          |  |  |
| Max. Mixed C4 product           | 0     | 11777                 | 12000          |  |  |
| Max. Residue gas                | 0     | 76634                 | 85000          |  |  |

### **Model-Results-Example-1**

Ethylene Middle East Technology Conference

Model has estimated highest consumption of Propane feed based on feed and product pricing

| Objective Function- Highest Ethylene |      |        |  |  |
|--------------------------------------|------|--------|--|--|
| INPUT                                | TPD  | % CONV |  |  |
| NGL Feed                             | 0    | -      |  |  |
| Pure Ethane Feed                     | 477  | 65     |  |  |
| Pure Propane Feed                    | 5878 | 88     |  |  |

Case-1

| Objective Function- Highest E+P |      |        |  |  |
|---------------------------------|------|--------|--|--|
| INPUT                           | TPD  | % CONV |  |  |
| NGL Feed                        | 0    | -      |  |  |
| Pure Ethane Feed                | 413  | 65     |  |  |
| Pure Propane Feed               | 5861 | 84     |  |  |

Case-2

| Objective Function- Higher | st Contr | ibution |
|----------------------------|----------|---------|
| INPUT                      | TPD      | % CONV  |
| NGL Feed                   | 0        | -       |
| Pure Ethane Feed           | 0        | 65      |
| Pure Propane Feed          | 6557     | 85.7    |

Case-3

| Fuel gas generated    | 77007  |  |
|-----------------------|--------|--|
| CH4 product           | 250    |  |
| Ethylene              | 120308 |  |
| Ethane recycle        | 35892  |  |
| Propylene             | 44648  |  |
| Propane recycle       | 35126  |  |
| C4 mix product        | 11836  |  |
| Rich Aromatic         | 11833  |  |
| Mixed oil             | 3232   |  |
| Contribution (MM USD) | 206.84 |  |
|                       |        |  |
| Fuel gas generated    | 74510  |  |
| CH4 product           | 250    |  |
| Ethylene              | 116678 |  |
| Ethane recycle        | 35110  |  |
| Propylene             | 50039  |  |
| Propane recycle       | 48381  |  |
| C4 mix product        | 11243  |  |
| Rich Aromatic         | 10785  |  |
| Mixed oil             | 2727   |  |
| Contribution (MM USD) | 200.80 |  |
|                       |        |  |
| Fuel gas generated    | 81086  |  |
| CH4 product           | 250    |  |
| Ethylene              | 116343 |  |
| Ethane recycle        | 27733  |  |
| Propylene             | 52761  |  |
| Propane recycle       | 47490  |  |
| C4 mix product        | 12000  |  |
| Rich Aromatic         | 11770  |  |
| Mixed oil             | 3169   |  |

Contribution (MM USD)

227.81

| Feed & Product Dummy |     |  |  |
|----------------------|-----|--|--|
| Pricing USD/mt)      |     |  |  |
| <u>Feed</u>          |     |  |  |
| NGL Feed             | 394 |  |  |
| Pure Propane         | 366 |  |  |
| Pure Ethane          | 338 |  |  |
| Recycle/Purge        | 563 |  |  |
| Wash Oil in CGC      | 394 |  |  |
|                      |     |  |  |
|                      |     |  |  |
|                      |     |  |  |
| Products             |     |  |  |
| Fuel gas             | 155 |  |  |
| Fuel gas export      | 296 |  |  |
| H2                   | 634 |  |  |
| Methane              |     |  |  |
| CH4 product          | 577 |  |  |
| Ethylene             | 465 |  |  |
| Propylene            | 493 |  |  |
| C4 mix               | 324 |  |  |
| 1,3 BD               | 254 |  |  |
| LPG                  | 169 |  |  |
| Rich AromaticS       | 254 |  |  |
| Benzene              | 408 |  |  |
| Tolune               | 310 |  |  |
| MXS                  | 423 |  |  |
|                      |     |  |  |

Raffinate

Mixed oil

254

### **Model-Results-Example-2**

Ethylene Middle East Technology Conference

#### Limiting feed. Preferred Operation -Case-3 Estimating highest contribution

| <b>Objective Function- Highest Ethylene</b> |      |        |  |
|---------------------------------------------|------|--------|--|
| INPUT                                       | TPD  | % CONV |  |
| NGL Feed                                    | 0    | -      |  |
| Pure Ethane Feed                            | 400  | 65.1   |  |
| Pure Propane Feed                           | 6000 | 88     |  |

#### Case-1

| Objective Function- Highest E+P |      |        |  |  |  |  |  |  |  |  |
|---------------------------------|------|--------|--|--|--|--|--|--|--|--|
| INPUT                           | TPD  | % CONV |  |  |  |  |  |  |  |  |
| NGL Feed                        | 0    | -      |  |  |  |  |  |  |  |  |
| Pure Ethane Feed                | 400  | 68     |  |  |  |  |  |  |  |  |
| Pure Propane Feed               | 6000 | 86.8   |  |  |  |  |  |  |  |  |

Case-2

| Objective Function- Highest Contribution |      |        |  |  |  |  |  |  |  |  |
|------------------------------------------|------|--------|--|--|--|--|--|--|--|--|
| INPUT                                    | TPD  | % CONV |  |  |  |  |  |  |  |  |
| NGL Feed                                 | 0    | -      |  |  |  |  |  |  |  |  |
| Pure Ethane Feed                         | 400  | 68     |  |  |  |  |  |  |  |  |
| Pure Propane Feed                        | 6000 | 88     |  |  |  |  |  |  |  |  |

Case-3

| Fuel gas generated | 77983             |
|--------------------|-------------------|
| CH4 product        | 250               |
| Ethylene           | 119951            |
| Ethane recycle     | 34461             |
| Propylene          | 45428             |
| Propane recycle    | 35814             |
| C4 mix product     | 11926             |
| Rich Aromatic      | 11942             |
| Mixed oil          | 3281              |
| Contribution (MM U | SD) <b>211.11</b> |
|                    |                   |

| Fuel gas generated    | 77522  |
|-----------------------|--------|
| CH4 product           | 250    |
| Ethylene              | 119249 |
| Ethane recycle        | 32400  |
| Propylene             | 47268  |
| Propane recycle       | 39883  |
| C4 mix product        | 11795  |
| Rich Aromatic         | 11690  |
| Mixed oil             | 3148   |
| Contribution (MM USD) | 210.45 |

| Fuel gas generated    | 78128  |
|-----------------------|--------|
| CH4 product           | 250    |
| Ethylene              | 119635 |
| Ethane recycle        | 32139  |
| Propylene             | 45433  |
| Propane recycle       | 35814  |
| C4 mix product        | 11939  |
| Rich Aromatic         | 12009  |
| Mixed oil             | 3318   |
| Contribution (MM USD) | 212.14 |

| Feed & Product Dummy<br>Pricing USD/mt) |  |  |  |  |  |  |  |  |
|-----------------------------------------|--|--|--|--|--|--|--|--|
| mt)                                     |  |  |  |  |  |  |  |  |
|                                         |  |  |  |  |  |  |  |  |
| 394                                     |  |  |  |  |  |  |  |  |
| 366                                     |  |  |  |  |  |  |  |  |
| 338                                     |  |  |  |  |  |  |  |  |
| 563                                     |  |  |  |  |  |  |  |  |
| 394                                     |  |  |  |  |  |  |  |  |
|                                         |  |  |  |  |  |  |  |  |
|                                         |  |  |  |  |  |  |  |  |
|                                         |  |  |  |  |  |  |  |  |
|                                         |  |  |  |  |  |  |  |  |
| 155                                     |  |  |  |  |  |  |  |  |
| 296                                     |  |  |  |  |  |  |  |  |
| 634                                     |  |  |  |  |  |  |  |  |
| 634                                     |  |  |  |  |  |  |  |  |
| 577                                     |  |  |  |  |  |  |  |  |
| 465                                     |  |  |  |  |  |  |  |  |
| 493                                     |  |  |  |  |  |  |  |  |
| 324                                     |  |  |  |  |  |  |  |  |
| 254                                     |  |  |  |  |  |  |  |  |
| 169                                     |  |  |  |  |  |  |  |  |
| 254                                     |  |  |  |  |  |  |  |  |
| 408                                     |  |  |  |  |  |  |  |  |
|                                         |  |  |  |  |  |  |  |  |
| 310                                     |  |  |  |  |  |  |  |  |
| 423                                     |  |  |  |  |  |  |  |  |
| 254                                     |  |  |  |  |  |  |  |  |
|                                         |  |  |  |  |  |  |  |  |

Mixed oil

# Conclusion

100% Asset utilization is important and Feed management essential to achieve this; Dynamic nature of the plant and availability of the feed requires evaluation and calculation of many parameters to achieve operation excellence within the given constraints of the plant

- Time is of essence during such situation and hence an automated decision support tool adds immense value
- A simple uncomplicated excel tool allowed Ethylene manufacturer to take decision to cope with changing feed availability and managing alternate feed
  - Increase and sustain plant production
  - Identification of bottlenecks
  - Optimize product yields
  - Increase gross contribution

Tools allows -

- Predict Cracker Yield- Optimize cracking severity- conversion of feedstock
- Consumption Rate of each Feedstock
- Plant Production Comparison Present v/s Predicted
- Monetary contribution if cost database is available
- Margin available in identified plant constraints
  - First debottleneck identification from listed constraints



Middle East Technology onference

# INGENERC Excellence Through Insight

www.ingenero.com

Houston

Mumbai

Doha

Jubail



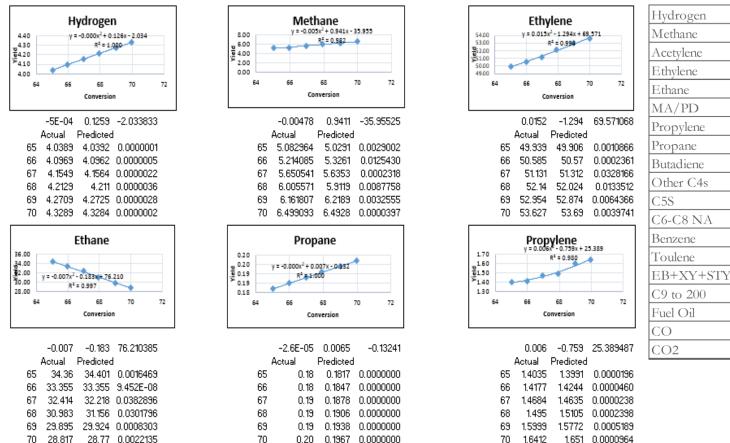
### **Regression for Furnace Effluent Prediction**

#### **Preparing regressed equations to predict the furnace effluent.**

In absence of kinetics/dynamic model, a fine tuned *"Plant Optimizer"* and *"Yield Predictor"* can be a better solution in plant feed and production management. This can be prepared by regressing plant big data or PFD data

✓ For preparation of regressed equation, furnace actual operating data (Furnace effluent composition- Detailed full analysis) with component mole% and operating conversion is required for each feed slate.

|             | Ethane |       |       |       |       |       |       | Propane |       |       |       |       |       |       |       | N-BUTANE |       |       |       |       |       |
|-------------|--------|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|
| Comp/Conv % | 65     | 66    | 67    | 68    | 69    | 70    | 84.9  | 86.0    | 87.1  | 87.8  | 88.0  | 88.3  | 89.0  | 89.8  | 90.0  | 0.95     | 1.00  | 1.05  | 1.10  | 1.14  | 1.20  |
| Hydrogen    | 4.04   | 4.10  | 4.15  | 4.21  | 4.27  | 4.33  | 1.47  | 1.50    | 1.52  | 1.52  | 1.52  | 1.66  | 1.77  | 1.68  | 1.59  | 0.98     | 0.95  | 0.95  | 0.99  | 1.01  | 1.02  |
| Methane     | 5.08   | 5.21  | 5.65  | 6.01  | 6.16  | 6.50  | 20.44 | 20.92   | 21.75 | 22.06 | 22.08 | 20.93 | 20.30 | 21.44 | 22.61 | 19.42    | 19.86 | 20.28 | 20.37 | 20.63 | 20.88 |
| Ethylene    | 49.94  | 50.59 | 51.13 | 52.14 | 52.95 | 53.63 | 32.97 | 33.61   | 34.42 | 34.65 | 34.68 | 35.57 | 36.53 | 36.51 | 36.05 | 32.88    | 33.31 | 33.59 | 34.49 | 34.84 | 35.17 |
| Ethane      | 34.36  | 33.35 | 32.41 | 30.98 | 29.89 | 28.82 | 5.05  | 5.29    | 4.83  | 4.72  | 4.70  | 7.15  | 8.90  | 7.87  | 5.87  | 5.35     | 5.44  | 5.51  | 5.19  | 5.24  | 5.14  |
| Propane     | 0.18   | 0.18  | 0.19  | 0.19  | 0.19  | 0.20  | 14.10 | 12.93   | 12.07 | 11.48 | 11.38 | 10.53 | 9.50  | 9.14  | 9.45  | 0.48     | 0.44  | 0.31  | 0.29  | 0.21  | 0.20  |
| Propylene   | 1.40   | 1.42  | 1.47  | 1.49  | 1.60  | 1.64  | 16.01 | 15.62   | 15.50 | 15.54 | 15.54 | 14.47 | 13.50 | 13.77 | 14.56 | 20.89    | 19.87 | 19.35 | 18.68 | 18.07 | 17.56 |
| Other Comp  | 4.99   | 5.15  | 4.99  | 4.97  | 4.92  | 4.89  | 9.96  | 10.12   | 9.99  | 9.99  | 9.99  | 9.70  | 9.50  | 9.58  | 9.88  | 20.00    | 20.13 | 20.00 | 20.00 | 20.02 | 20.02 |
| Total       | 100    | 100   | 100   | 100   | 100   | 100   | 100   | 100     | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100      | 100   | 100   | 100   | 100   | 100   |


In absence of furnace actual operating effluent results, material balance based on different PFD cases as provided by licensor can be utilized.

✓ From the good plant operating data, estimation of regressed equations can be done for all the components in the furnace effluent (estimation of components other than Olefins is necessary to calculate heavier stream flows)

### **Regressed Equations-Olefins in Furnace Effluent**

Ethylene Middle East Technology Conference

#### Regressed equations-Ethane Feed-Example



Similar regressed equations for Propane, Butane, Naphtha feed can be estimated for other component as show in above table. By using regressed equations and recovery model, the individual component flows in furnace effluent and for all in-out streams across columns/sections can be estimated.