

Ethylene Middle East Technology Conference UNEXPECTED TWO-PHASE FLOW STALLING A DEMETHENIZER INTERCONDENSER

PREPARD BY : NILESHKUMAR PATEL Sr. Process engineer (PITD) SADARA CHEMICAL COMPANY

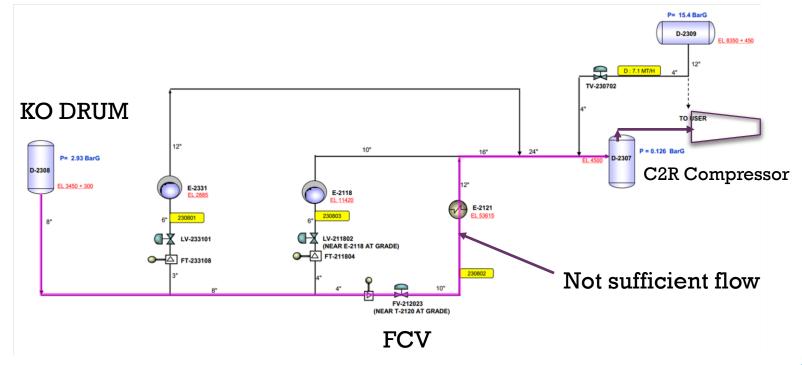
EMET CONFIGENCE

About Sadara

Sadara Chemical Company is a joint venture developed by Saudi Aramco and The Dow Chemical Company. Sadara is a multi-billion dollar worldscale chemical complex in Jubail Industrial City II in Saudi Arabia's Eastern Province.

Comprised of 26 world-scale manufacturing units, the Sadara chemical complex is the world's largest to be built in a single phase producing more than 3 million tons of plastics and chemicals annually and is the only chemical company in the Middle East to use refinery liquids, such as naphtha, as feedstock.

By using best-in-class technologies to crack refinery liquid feedstock, Sadara will enable many industries that either currently do not exist in Saudi Arabia or only exist through imports of raw materials.


INDEX

- Problem statement
- Aspen model hydraulic analysis
- Findings Substantial difficulty in getting C2R loop flow
- Proposed solution and challenges for new modifications
- Conclusion

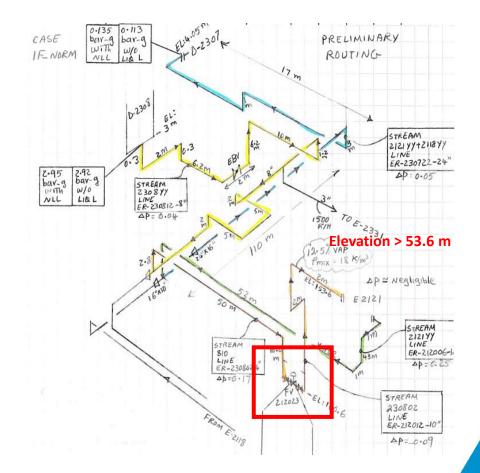
Ethylene Refrigerant (C2R) loop

<u>Problem Statement:</u> Substantial Difficulty in getting C2R flow through E-2121.

E-2121 hydraulic and performance check

- Model developed in Aspen Plus
- Preliminary hydraulics for E-2121 circuit indicate NO pressure limitation, however C2R pressure at E-2121 shell outlet needs to be 0.5 barg (vs. 0.16 barg, Design case) to match IP21 data.
- Check control valve sensitivity with Temperature and Pressure.

	FV-212023 % Open	E-2121 C2R, temp oC	D-2307 Pressure BARA
	EO	100.0	0 70
2	60	-99.1	0.95
3	61	-97.7	1.08
-1	04	-30.4	1.40
5	63	-95.4	1.30
6	64	-94.4	1.40
Z	65	-93.6	1.48
8	66	-92.9	1.55
9	67	-92.3	1.62
10	68	-91.7	1.68
11	69	-91.2	1.73
12	70	-90.8	1.78



- Detail engineering hydraulic model not consider pressure drop impact on C2R temp at E-2121 outlet. Although small, DP impact could be critical and result in Ethylene loss in fuel gas.
- BUT WHY was it difficult to startup E-2121 loop? Operations had to change Pressure S.P. on Compressor / C2R drums to get flow started!

ELEVATION PROFILE IMPACT

- E-2121 elevation stands out.
- Not enough Pressure differential to flush vertical line filled with liquid
- FV cross check on control valve software against field ΔP matches above conclusion

- Exchanger elevation and startup flows problematic. Need sufficient flow to generate substantial flash across FV and allow 2-phase mixture to rise.
- Yes, 2-phase ΔP is lower than only liquid phase in vertical line!
- Project initiated to route some flow from rundown ethylene to CTF into E-2121. No impact on C2R compressor performance.
 Project required stronger justification to proceed.

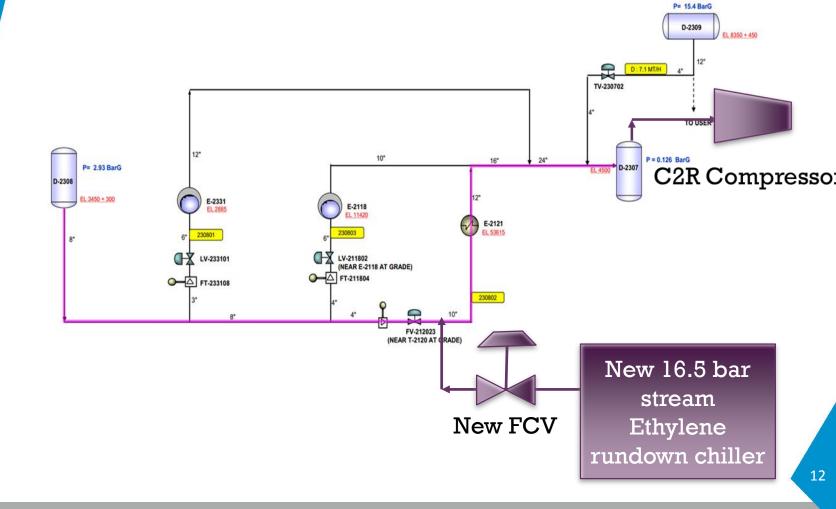
FLUID FLOW ANALYSIS

Why is FV inlet single phase?

- Software(s) use phase equilibria. Head gain allows 2-phase to become single.
- Process engineering analysis
 - Consider 2-phase at FV inlet > upsize valve.
 - Vapor pocket can develop at high point
 - Recommend to proceed with C2 new 16 barg rundown stream option

Head gain doesn't ensure thermodynamic equilibrium (phase split) will be re-established. Straight length requirements for 2-phase can be >100 D

 Aspen model modified to include this effect, but mismatch still existed. Closer match with control valve software with 2-phase option.



- 1. 2-phase fluid at Valve inlet, while control valve design for single phase inlet condition.
- 2. Not obvious even with modeling. Cross-check with right tool at right time
- 3. Understand sensitivity
- 4. For a HX with close approach, slight change in temperature will severely impact performance.
- 5. Startup requirements can be different than steady state operation
- 6. Pressure measurements done in field depend upon location and can be misleading

Ethylene Middle East Technology Conference

Proposed new modification & Challenges

Conclusion

- All possible scenario including startup scenario need to be check sensitivity of the system during design phase
- Two phase flow analysis flow regime shall be indicated in the P&ID with different possible scenarios
- Transient load calculation required for slug flow & special piping design support consideration
- Valve inlet phase fluid sensitivity must be considered during design phase
- Valve elevation profile hydraulic impact must evaluate for piping and control valve design