Ethylene Middle East Technology Conference

 Energy Enhancing Systems

Dr. John Olver PhD, P.E.

misship

Impact on Process Tube Coking and Process Heat Transfer by High-Emissivity Coating Systems

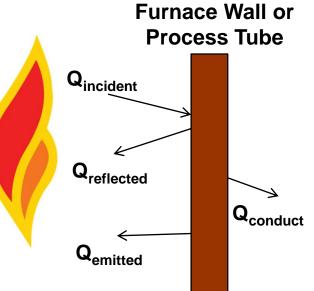
Presentation: Two Step Process-Radiant Wall / Process Tubes

- **Radiation in gas fired furnaces**
- High Emissivity coating properties
- **Furnace simulation with High Emissivity coating**
- Process Tube Coking
- Process Tube performance with High Emissivity coatings

Thanks to REI and Dr. Brad Adams

Note: Phillips Petroleum installed the first HE Coating on refractory walls in 1997 and got a 6% production increase.

Furnace Radiative Heat Transfer


Flames / heat source radiate to furnace walls and process tubes

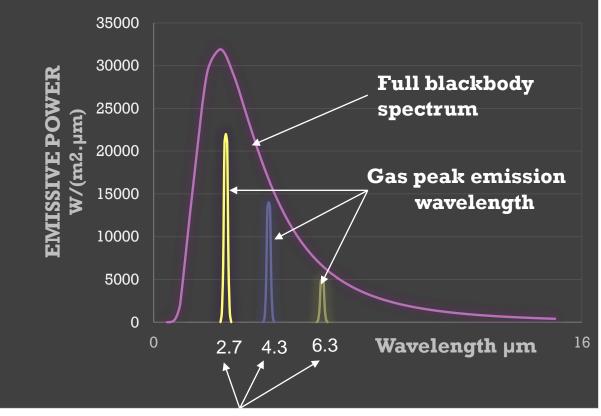
Surfaces absorb and reflect incoming radiation

- Absorbed radiation is either reemitted or conducted into surface
- Non-absorbed radiation is reflected back into gas

Better to reflect or reemit incident radiation?

- □ Reflection = low emissivity
- Absorption / emission = high emissivity
- **u** Heat Flow Hot to cold $T_1 > T_2$

 $\mathbf{Q}_{inc} = \mathbf{Q}_{refl} + \mathbf{Q}_{emit} + \mathbf{Q}_{cond}$

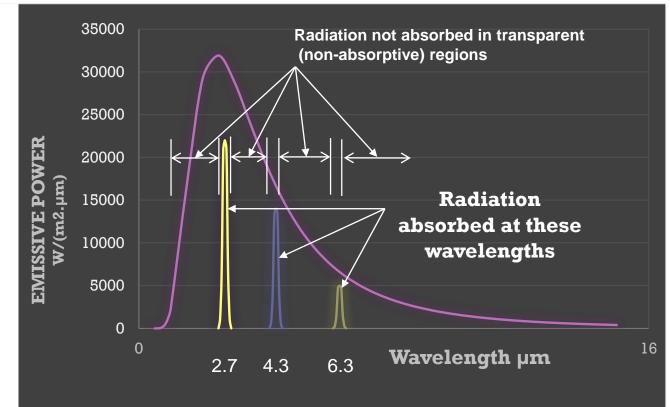


Natural Gas Absorption / Emission Bands

Natural Gas emits and absorbs radiation only at absorption band wavelengths; gas is transparent in between bands

Most surfaces emit radiation over full wavelength spectrum (similar to blackbody)

Main absorption wavelengths in combustion gases (H₂O, CO₂)

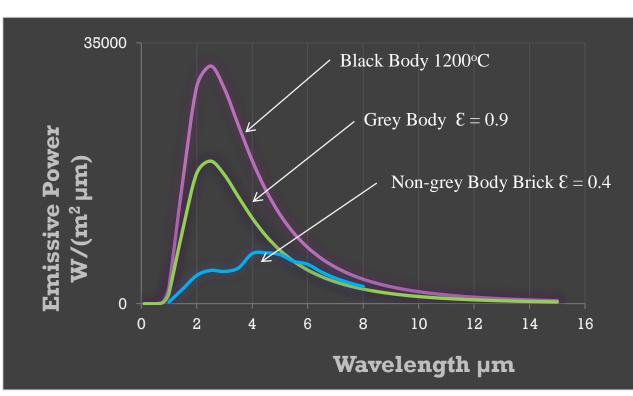


Reflection vs Emission

Radiation *reflected* by walls is partially reabsorbed by gas

Radiation *emitted* by walls is mostly transmitted through transparent bands

* Reducing the amount of reflected radiation reduces the amount of radiant energy reabsorbed in the gas and increases furnace radiant efficiency.



High Emissivity Coatings on Refractory Walls

Coating increases surface emissivity and absorptivity

- For E = 0.9, 90% of incident radiation is absorbed and reemitted
- More emitted radiation transmitted through transparent gas regions
- Less reflected radiation reabsorbed in gas
- Increases radiant efficiency

Emisshield[®] coating behaves nearly as a blackbody

CFD Wall Simulation Summary By Reaction Engineering International

Parameter	Casel	Case2
Wall Emissivity	0.4	0.9
Firing Rate (MW)	15.26	15.26
Flue Gas Exit Temperature (°C)	1,223	1,194
Tube Heat Absorption (MW)	5.95	6.18
Max Tube Temperature (°C)	1,352	1,356
Fluid Outlet Temperature (°C)	855	859
Casing Loss (% of firing rate)	1.6	1.6
Furnace Efficiency (%)	39.0	40.5

Furnace Radiant Wall CFD, HE Coating Summary High emissivity coatings improve radiant efficiency by increased refractory absorption and reemission.

Application in cracking furnaces showed:

- 6% fuel savings with 9% reduction in steam production
- 5% fuel savings with 6% increase in production output and doubling of time between de-coke cycles

Must Re-optimize the furnace!

Why and When To Coat Process Tubes?

Mechanisms For Coke Formation

- Heterogenous Catalytic
- Homogenous Droplets
- Heterogenous Free-Radical

TMT / Reaction rates / Tube Metallurgy

• Munoz, Van Geem, Reyniers and Maren; "Industrial and Engineering Chemistry Research" 2014

Reduction of Coking Technologies

Three Dimensional Reactor Technologies

Surface Technologies – Coatings and Oxide Formation from Metallurgy

□ Feed Additive Technologies

Ceramic Process Tubes

Process Tube Material Issues

Catalyst to Coking

Fe

Ni

Metallurgy Changes

High Ni/Cr

HP- Nb

Aluminum Enriched Alloys

Development of Cr, Al, Ni oxide layer on tube exterior

Hemispherical Emissivity Results TPRL-ASTM C835-06

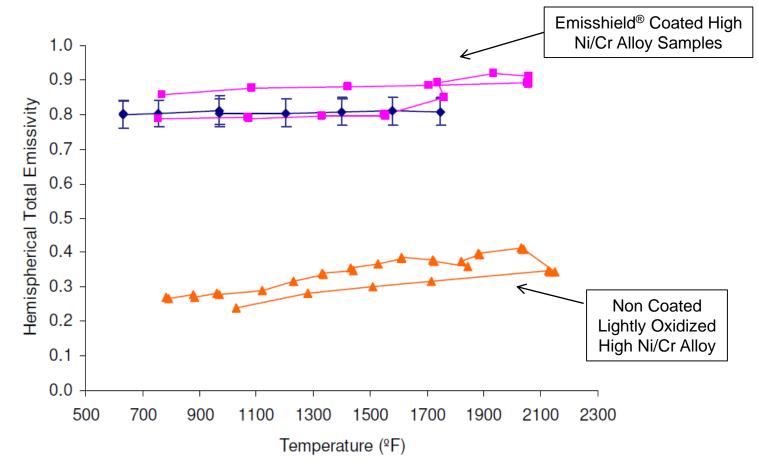
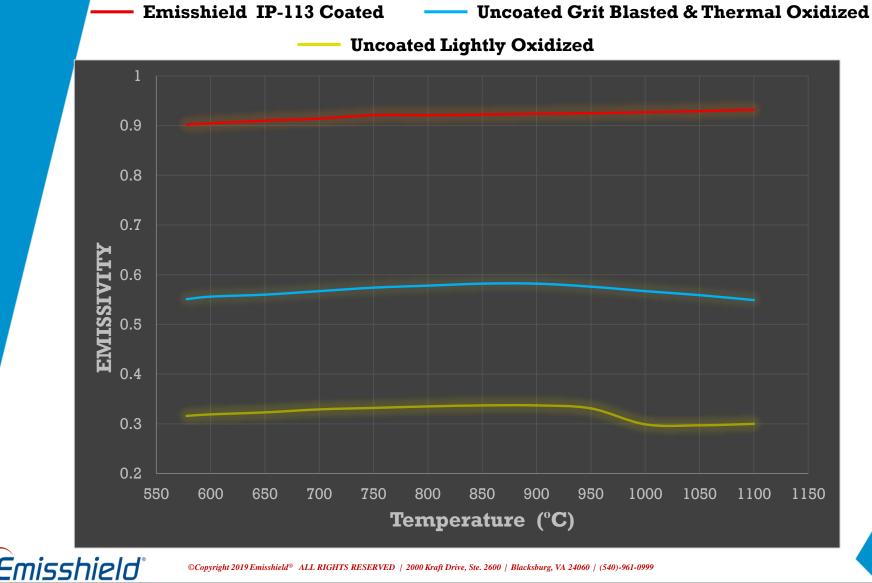


Figure 1. Hemispherical Total Emissivity



Hemispherical Emissivity of High Ni/Cr Petrochemical Process Tubes

Ethylene Middle East Technology

Conference

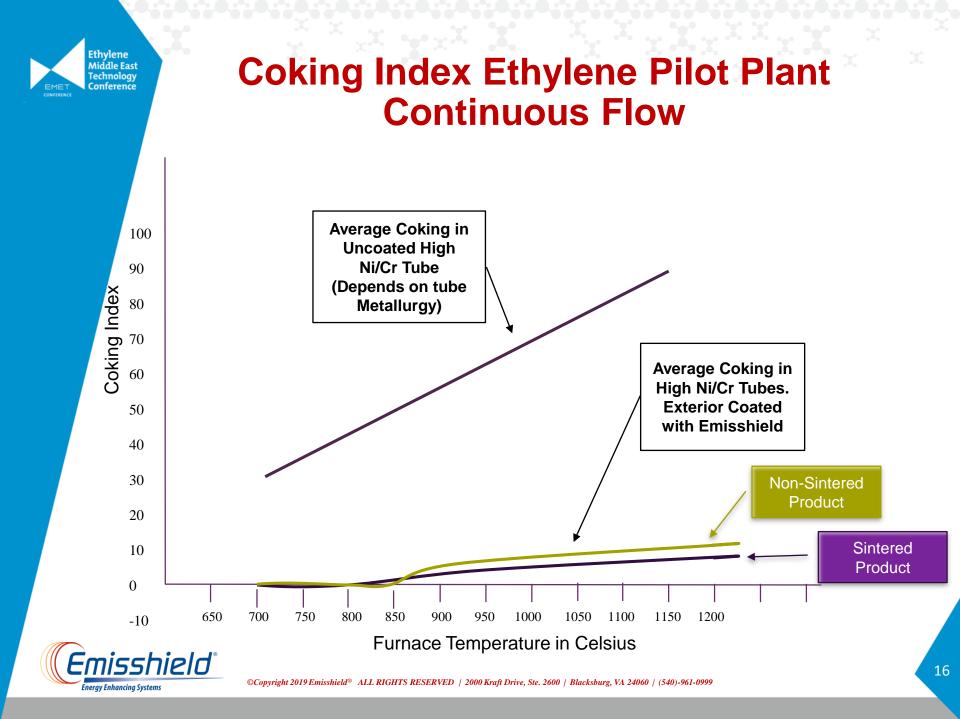
Energy Enhancing Systems

Process Tube Emissivty Theory Issues

Question:

- **Does** higher emissivity on tube exterior surface reduce coking (Composite Tube)?

Does higher Intrinsic emissivity Lower TMT and improve reaction rate? **Observations:**


<u>Yes</u>, it may as an Intrinsic not Apparent emissivity.

<u>Yes</u>, It lowers TMT (Up to 60°C), which may lead to less coke formation and the increased heat flux leads to improved reaction rate.

- **Does** ceramic coating with Intrinsic emissivity on tube exterior reduce tube exterior/interior hot spots?

<u>Yes</u>, and that, in turn, may reduce hotspots on tube interior and oxide nucleation sites - thus less coke.

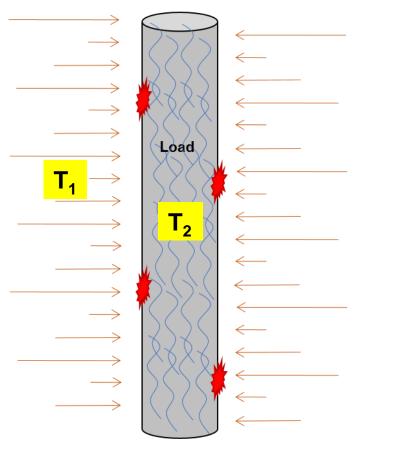
EMISSHIELD COATING Exterior of Process Tubes Theory

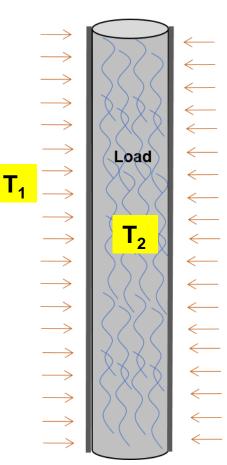
Coated Tube Overall Benefits:

- 1. Fuel Savings/Production Increase
- 2. Creates a uniform and increased heat flux/minimizes hot spots
- 3. Emissivity at temperature: 0.90 0.95
- 4. Minimizes insulative thermal oxide layer
- 5. Minimizes nucleation sites in interior
- 6. Reduces coking and carburization
- 7. Reduces TMT

Uncoated Ni/Cr Tube Conditions:

- 1. Emissivity at temperature: 0.5-0.8
- 2. Develops insulative thermal oxide layer
- Hot spots across the process tube no-uniform oxide layer and spallation
- Coking tendencies still present (Ni/Fe)
- 5. Higher TMT Higher Coking
- 6. Tube creep


Ethylene Middle East Technology Conference


Increase Heat Transfer

No Emisshield Uneven heating across the tube creates hot spots

With Emisshield

No hot spots are formed

Emisshield Process Tube / Radiant Wall Solutions

- 1. <u>**Developed by NASA</u>** to Protect Human Life and Space Vehicles in extremely violent Thermal Conditions.</u>
- 2. Thermal Stability to 1350°C on Tubes and Radiant Walls
- 3. <u>Thermal Shock</u> tested from -200°C to 1500°C in 3 seconds with no debonding.
- 4. <u>Adhesion</u> Thermal Shock Bonding Strength > 5,000 psi.
- 5. *Hemispherical Emissivity* > 0.9
- 6. <u>Thin Filmed</u> Less than 75m in thickness for maximum performance.

Ethylene Middle East Technology Conference

 Energy Enhancing Systems

Dr. John Olver PhD, P.E.

misshie

Impact on Process Tube Coking and Process Heat Transfer by High-Emissivity Coating Systems