

## **Mixed Feed Cracker**

### Basis for a mixed feed cracker

Be designed to crack ethane, LPG, and Naphtha feeds in one train

### Strong advantage

- Take benefit of availability of low cost feedstock
- Production of broad range of High Value Chemicals
- Possibility to adjust plant production profile to the market
- Improve revenues

### Requirement

Be flexible!





## Existing Mixed Cracker "Plant A"





## Plant "A" Mixed Feed Cracker

First mixed-feed cracker in Middle-East

Capacity

| Ethylene  | 1345 kTA |
|-----------|----------|
| Propylene | 305 kTA  |

### Feedstock

- Gas Feed: Ethane
- Liquid Feed:
  - Mix of 6 different feed streams (from LPG to Condensates)
  - Mostly C4-C8 boiling range
- Design based on 40% ethane feed 60% liquid feed

### Plant started-up in 2007



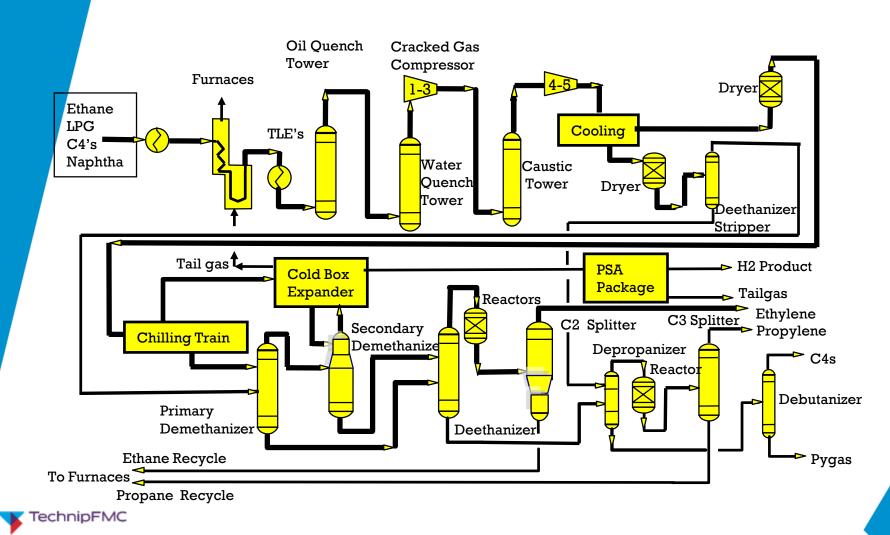
## **Plant "A" Mixed Feed Cracker**

### Plant Configuration

Gas and liquid furnaces

One single fractionation train

Plant flexibility to variation of gas and liquid feed ratio requested


Front-End Demethanizer, Back-End Hydrogenation, Closed Heat Pump C3 Refrigerant cycle, Open cycle C2 Refrigerant cycle

Common Utilities and Feed preparation, Storage area: atmospheric ethylene storages





### **Process Arrangement**



## **Cracking Furnaces**

#### 10 Furnaces - 3 types

- 3 SMK gas furnaces for fresh ethane feed and ethane recycle
- 4 GK5 liquid furnaces for fresh liquid feed and propane/butane recycles
- 3 swing furnaces

#### Swing furnace concept

- Swing furnaces can crack any type of feed
- SMK Gas type furnaces, with some adaptations to crack liquid feeds
- Spare furnace is a gas type furnace as liquid furnace design is not optimum to reach the 60 days run length when a gas furnace is being decoked

#### Normal operation

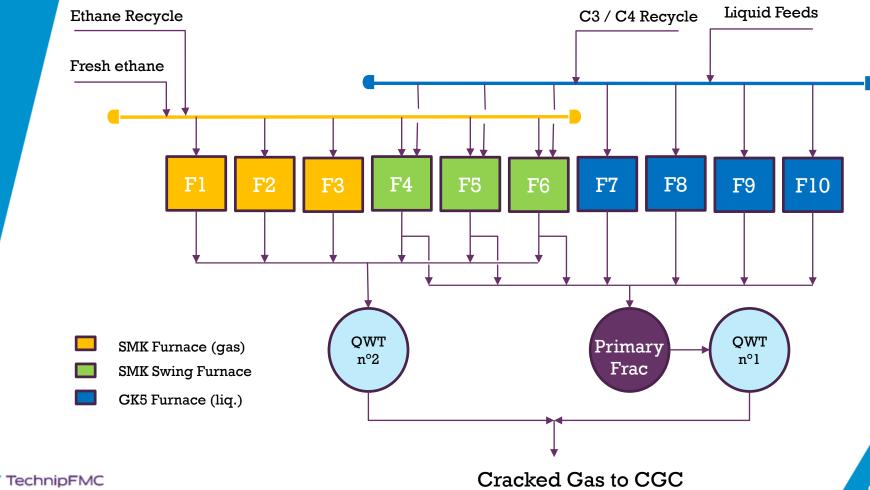
- Gas feed cracked in 3 gas furnaces plus 2 swing furnaces
- Liquid feeds cracked in 4 liquid furnaces
- One swing furnaces in HSSB



#### EMET CONFERENCE

### Challenges

- High fresh ethane to fresh liquid feed ratio
- Light liquid feedstock
- Limited availability of flux oil
- First mixed feed cracker reference


### Plant designed with two hot sections

- Primary Fractionator & Quench Tower processing cracked gas from liquid feeds
  - Primary Fractionator bottom temperature 190°C
  - Middle-Oil loop and Flux-Oil
- Dedicated Quench Tower processing cracked gas from gas feed
- Each Quench Tower having its dedicated Process Water processing systems
- One common Dilution Steam generation system
  - Partial generation of Dilution Steam from Quench Oil





### **Hot Section**



## **Chilling Train**

Front-end Demethanizer first

#### TechnipFMC two-Demethanizer scheme

- MP Demethanizers
- Reboilers of demethanizers integrated with cracked gas
- Turbo-Expanders on tail gas or methane fuel-gas

Cold box (with integration of cryogenic purification of H2) 20 streams

Very flexible arrangement – proven operation

- Ethane/propane feed crackers
- Mixed gas/liquid feed crackers
- Liquid feed crackers

Concept applicable to front-end and back-end crackers





### **Plant Characteristics**

| Olefin Production                      | 1650 KTA                |  |  |
|----------------------------------------|-------------------------|--|--|
| Oil Quench Tower, m (diam x height.)   | 6.6 m x 37.9            |  |  |
| Water Quench Tower, m (diam. x height) | 6.5 x 28.8 – 6.5 x 23.9 |  |  |
| C2 Splitter, m (diam. x height)        | $6.0 \ge 76.4$          |  |  |
| C3 Splitter, m (diam. x height)        | 6.0 x 83.9              |  |  |
| CGC shaft power, MW                    | 56.1                    |  |  |
| C3R Compressor shaft power, MW         | 36.9                    |  |  |
| C2R Compressor shaft power, MW         | 11.6                    |  |  |



## **Energy efficiency**

### Specific Compression Power

- Sum of 3 main compressors shaft power per ton of ethylene/olefin
- Plant A Specific Compression Power = 610 KW/t ethylene
- Plant A Specific Compression Power = 497 KW/t ethylene+propylene

### High energy performance (benchmark)











## Existing Mixed Cracker "Plant B"



## **Plant "B" Mixed Feed Cracker**

#### Planned Feedstock

- Purity Ethane Gas Cracking Furnaces with Gas Cracking Recovery Train
- Full range Naphtha Liquid Cracking Furnaces with Liquid Cracking Recovery Train

#### Capacity

- Gas Cracking Train 985 kTA
- Liquid Cracking Train
  900 kTA

### Train Configuration

- Gas Cracking Front-End Deethanizer/Front End Hydrogenation Reactor, Open-Loop C2 Splitter
- Liquid Cracking Front-End Depropanizer/ Front-End Hydrogenation Reactor, Open-Loop C2 Splitter
- Common Utilities Feed Treatment, DMDS/Caustic/Wash Oil Storage, Polisher, Spent Caustic Treatment, Decoke Air Compressors, Flare, Cooling Tower



## **Project Progress**

Three FEED packages prepared – Gas Cracker, Liquid Cracker and Common Utilities

Cost Estimate prepared

Cost too high

Cost cutting ideals

- Combine gas train and liquid train into one train
- Reduce overall capacity to 1500 kTA
- Simplify plant operation
- Gas feed contributes to ~900 kTA
- Liquid feed contributes to ~600 kTA





# Furnace Allocation Comparison

|                           | Separate Train |        | Combined Train |
|---------------------------|----------------|--------|----------------|
|                           | Gas            | Liquid | Gas/Liquid     |
| Plant Capacity, kTA       | 985            | 900    | 1500           |
| Gas Cracking Furnaces,    | 7 + 1          | -      | 6 + 1          |
| Capacity, kTA (each)      | 140.7          | -      | 150            |
| Liquid Cracking Furnaces, | -              | 7 + 1  | 4 + 1          |
| Capacity, kTA (each)      | -              | 128.6  | 150            |





## Large Equipment Comparison

|                                  | Separate Train |           | Combined Train |
|----------------------------------|----------------|-----------|----------------|
|                                  | Gas            | Liquid    | Gas/Liquid     |
| Plant Capacity, kTA              | 985            | 900       | 1500           |
| Oil Quench Tower, m<br>(diam.)   | -              | 10.7      | 12.4           |
| Water Quench Tower,<br>m (diam.) | 6.4            | 9.2       | 10.0           |
| C2 Splitter, m (diam.)           | 5.7            | 5.4 / 3.8 | 7.35 / 5.95    |
| CGC power, MW                    | 25.7           | 37.3      | 52.4           |
| C2R Compressor<br>power, MW      | 18.0           | 10.5      | 22.6           |
| C3R Compressor<br>power, MW      | 19.8           | 35.1      | 57.4           |





### **Steam System Comparison**

|                                             | Separat | Combined<br>Train |             |
|---------------------------------------------|---------|-------------------|-------------|
|                                             | Gas     | Liquid            | Gas/Liquid  |
| Plant Capacity, kTA                         | 985     | 900               | 1500        |
| 101.5 bar Steam make<br>from furnaces, t/hr | 371     | 480               | 744         |
| Turbine to accept<br>101.5 bar steam        | CGC     | CGC               | CGC / C3R   |
| Power, MW                                   | 25.7    | 37.3              | 52.4 / 54.3 |
| Steam Throttle flow,<br>t/hr                | 371     | 480               | 368 / 368   |

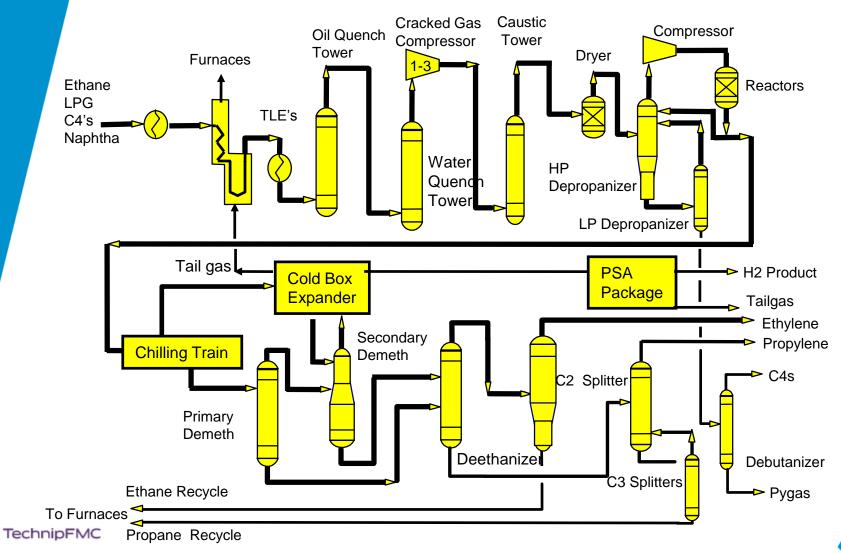




### **Project Execution**

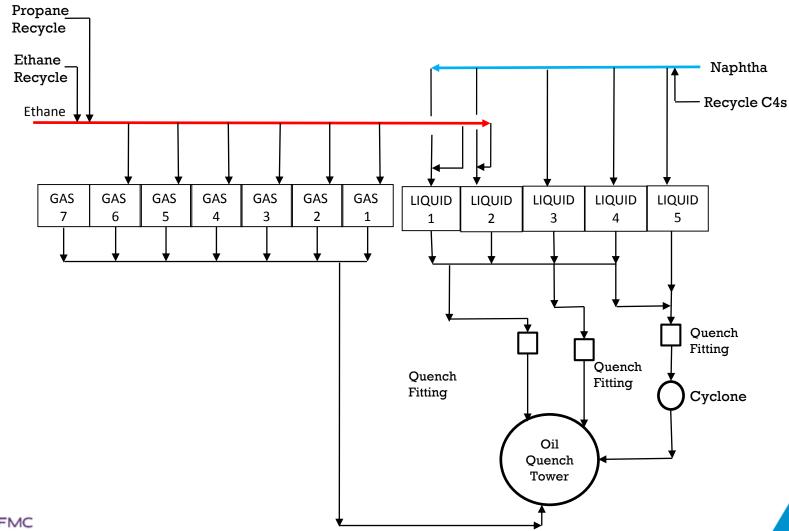
**Flow scheme** 

Front-End Depropanizer


Front-End Hydrogenation Reactor

**Open-Loop C2 Splitter** 






## **Process Flow Scheme**





## **Furnace Feed/Effluent Header**





### Conclusion



## Maximized Flexibility for Maximum Revenue

- Two grassroots Plants in operation with olefin production up to 1900 kta.
- Technology solutions for maximum flexibility
- Furnaces
  - Optimisation of both yields and run length
  - Swing furnaces concept
- Hot section
  - Single or dual hot sections
  - Primary Fractionator bottom temperature
- Front-end or back-end hydrogenation
- Chilling train with TechnipFMC patented two-demethanizer scheme applied to both technologies

### **CAPEX Optimized**

#### Mixed feed cracker above 2500 kta olefins is feasible





Ethylene Middle East Technology Conference

### Thank you