

KBR Olefins Technologies

Providing Key Flexibility with Optimum Design to Ensure Profitability

Outline

- Introduction to KBR and KBR Technologies
- The need for flexibility:
 - Feedstock
 - Product slate
- SCORETM technology gives ability to process various feedstocks at optimal conditions
- K-COTTM technology gives an alternative for higher propylene-to-ethylene ratio
- Integration of K-COTTM and steam cracking
- K-PROTM provides an innovative and lower cost option for on-purpose propylene production

KBR at a Glance

Revenue

Full year 2017

\$4.2 bn

Headquarters

Houston,

Texas

Employees

~ 35,000

Global Presence

80+
Countries

KBR is a global provider of differentiated professional services and technologies across the asset and program life cycle within the Government Services and Hydrocarbons sectors

KBR Segments

TECHNOLOGY

Proprietary technologies focused on the monetization of hydrocarbons including oil refining; ethylene and petrochemicals; gasification; as well as fertilizers including ammonia, nitric acid and phosphoric acid, and inorganic salts

HYDROCARBONS SERVICES


Differentiated EPC;
maintenance services (via
Brown & Root Industrial
Services); program
management and consulting
services for onshore oil and
gas; LNG (liquefaction and
regasification)/GTL; oil refining;
petrochemicals; chemicals;
fertilizers; biofuels; offshore oil
and gas (shallow-water, deepwater, subsea); and floating
solutions (FPU, FPSO, FLNG &
FSRU)

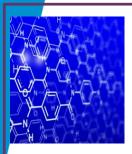
GOVERNMENT SERVICES

Global capabilities that cover the full life-cycle of defense, space, aviation and other government programs and missions including research and development, systems engineering, test and evaluation, program management, operations, maintenance and field logistics

KBR Technology Portfolio

Refining

- ROSE[®]
- VCC™
- FCC, MAXOFIN™, MAXDIESEL™
- Hydroprocessing
- Advanced Distillation
- K-SAAT™, MAX-ISOM™, NEXOCTANE™
- · Aromatics Extraction


Ammonia and Syngas

- Ammonia
- · Weatherly Nitric Acid
- Weatherly Ammonium Nitrate, UAN
- Syngas, Coal Gasification

Olefins

- SCORE™
- K-COT™
- K-PRO™

Chemicals

- Phenol/Acetone, BPA
- PCMAX™
- PVC
- · Acetic Acid
- · Vinyl Acetate Monomer
- NExETHERS™
- Aromatic Transalkylation

Inorganic Chemicals

Ecoplanning Evaporation & Crystallization

- Purified Phosphoric Acid
- Fly Ash Crystallization
- Metal Sulfates recovery

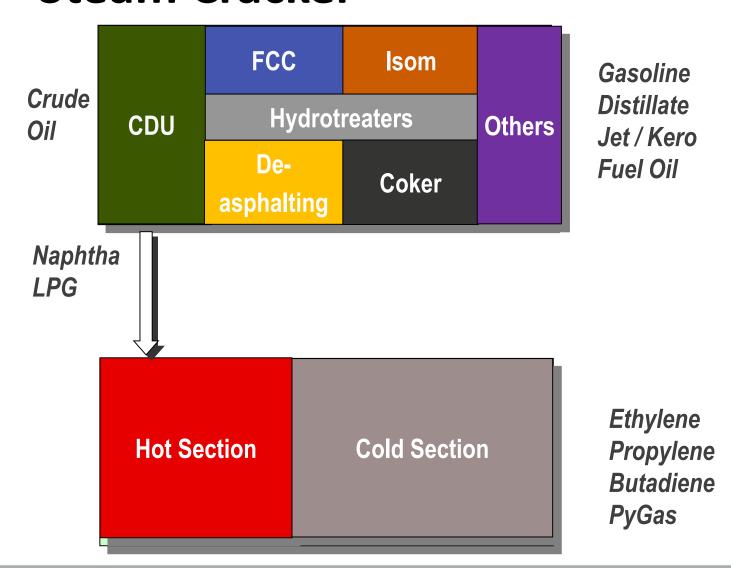
Plinke Acid Treatment

- High concentration separation and recovery
- Nitration of Benzene

All Markets

Proprietary Equipment & Catalysts

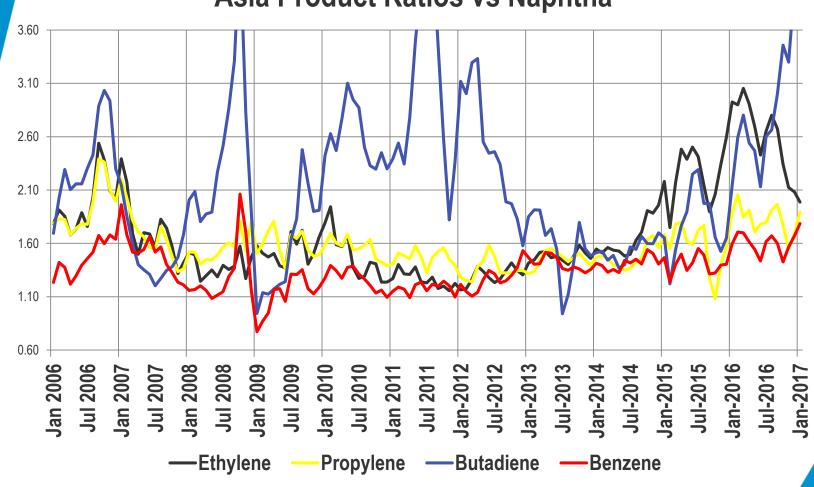
- Internals
- Specialized Service
- Proprietary Design
- Proprietary Catalysts


Automation and Process Technologies

- InSiteSM Performance Advisory
- Adv Simulation, OTS, APC, RTO
- Operations Assurance Solutions
- Technical Services

Proprietary Technologies

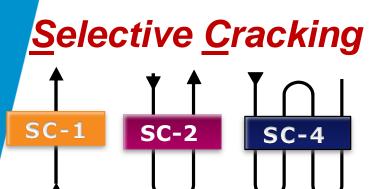
Conventional Refinery and Steam Cracker


Flexibility is Key for Olefins Profitability

- Typical project justification uses anticipated feed, product and utilities pricing
- 20 year project life

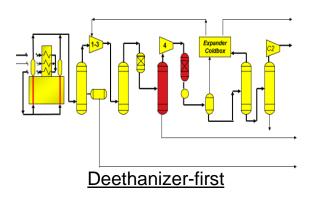
Historical Prices

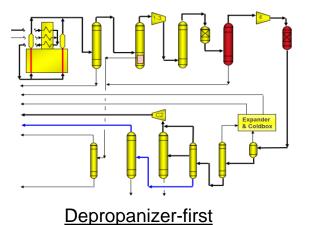
Asia Product Ratios vs Naphtha



Flexibility is Key for Olefins Profitability

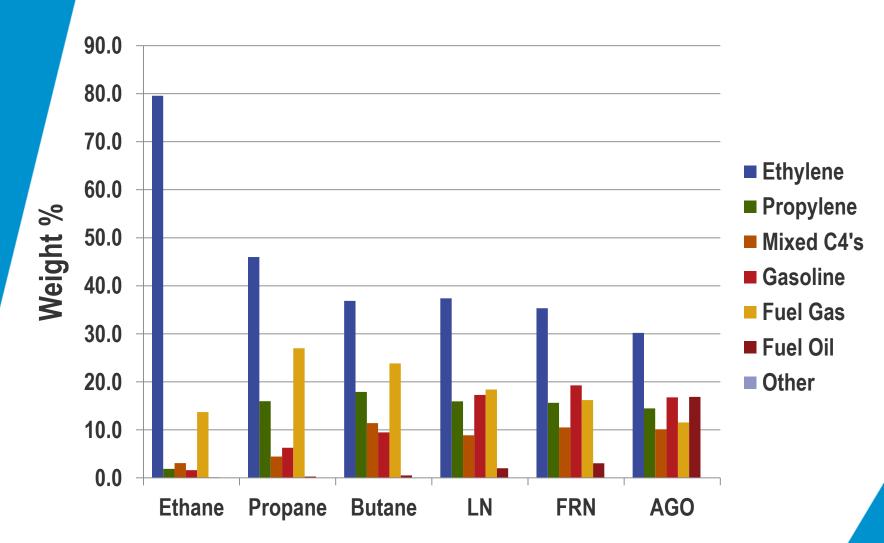
- Typical project justification uses anticipated feed, product and utilities pricing
- 20 year project life
- Actual experience is that these continuously fluctuate
- Thus, FLEXIBILITY is the key to maintaining plant profitability throughout the project life time



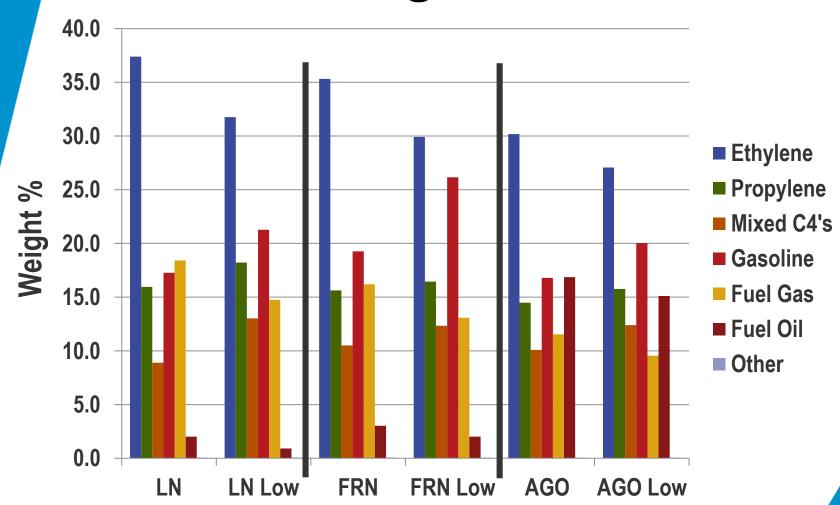

SCORETM Ethylene Technology

Coil Type	Residence Time (sec)	SCORE	Competitors
Four pass	0.4	SC-4	Yes
Two pass	0.2	SC-2	Yes
One pass	0.1	SC-1	No

SCORETM

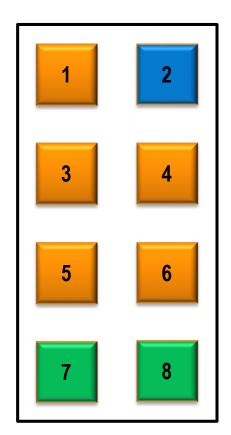


Optimum REcovery



Typical Steam Cracking Yields

Cracking Severity Impact on Steam Cracking Yields



SCORETM Furnace Flexibility

Multi-Feed (Hybrid) Cracking

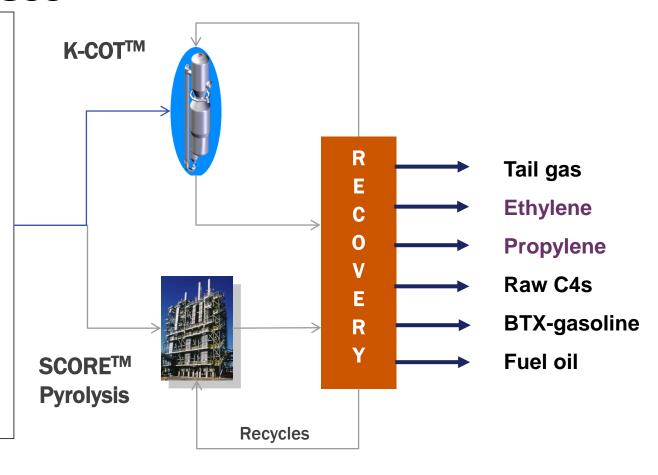
SCORETM Furnaces

- Large Capacity
- Single Cabin Firebox
- 8 individually flow controlled passes
- Number of Feeds only limited by inlet piping arrangement
- Each Feed can be cracked at optimum conditions:
 - Temperature
 - S:HC Ratio

Flexibility of 8 mini furnaces within a single firebox

KBR Catalytic Olefins Technology (K-COT)TM

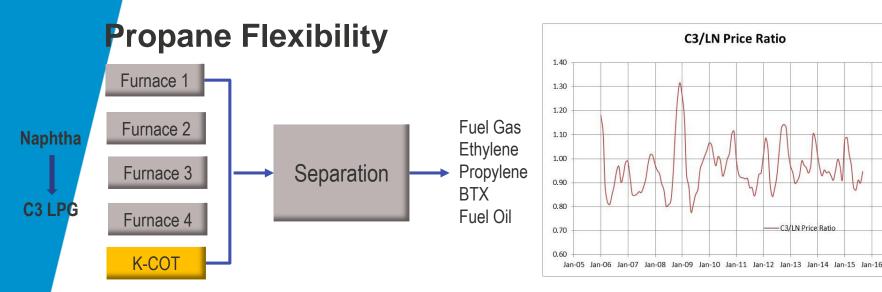
Converter


- Olefinic, Paraffinic or mixed feeds
- High propylene yields with ethylene and aromatic-rich gasoline by-products
- Typical P/E = 2 (olefinic) or 1 (paraffinic)
- Proven FCC-based technology
- Tailored ZSM-5 catalyst maximizes propylene yield
- Simple operation
- Wide feed flexibility

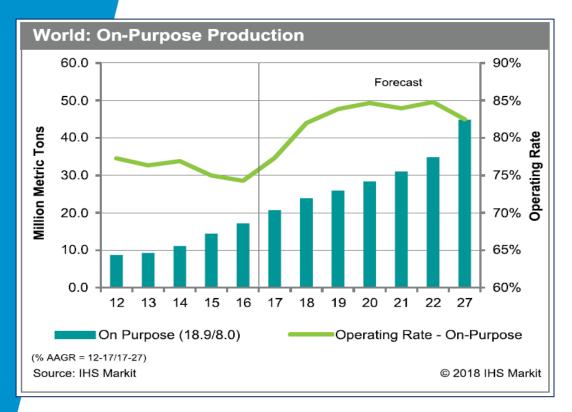
KBR Advanced Flexible Olefins Process

Fresh Feeds:

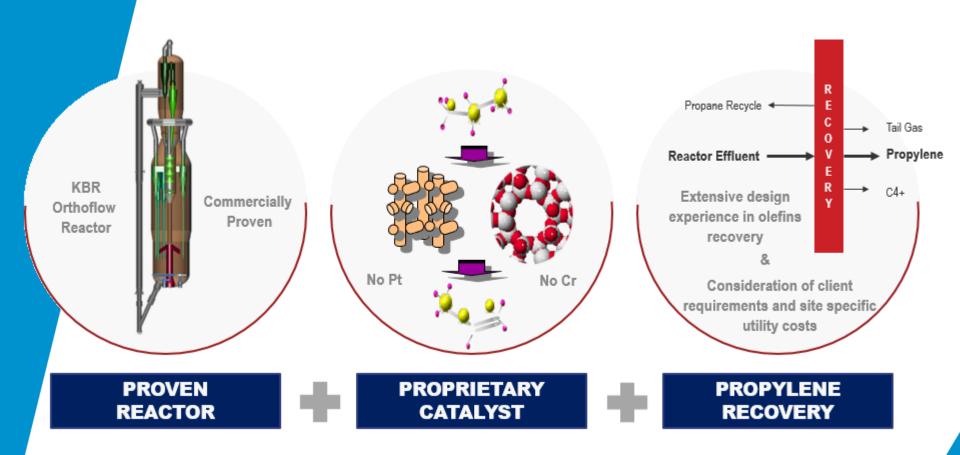
- Ethane
- LPG
- Mixed Refinery C4s
- Straight-run Naphtha
- Cracked Naphtha (FCC, Coker, Visbreaker)
- Raffinate from Aromatics Complex
- Gasoil/HGO/VGO/ Unconverted Oil
- By-products from FT/MTO/MTP facilities
- Oxygenates
- Other low value olefinic streams


- Highest flexibility on feed side
- Highest flexibility on product side

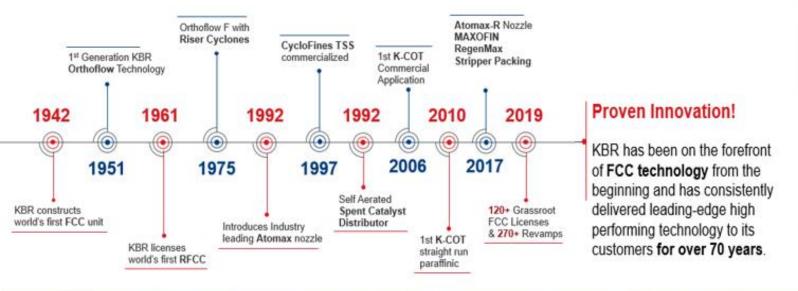
Optimization based on market conditions

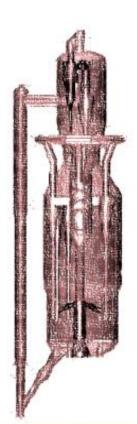

Hybrid Configuration for Ultimate Feed Flexibility

- Goal: Lower Feedstock Costs while keeping downstream PE and PP plants fully loaded (→ constant P/E ratio)
- Conventional Cracker: ability to swap in C3 LPG limited to 25% → Benefit @ C3/LN 0.9 = \$29/ton ethylene
- K-COT: able to swap in 75%! → Benefit @ C3/LN 0.9 = \$93/ton ethylene (i.e. \$74/ton ethylene more benefit)


On-purpose Propylene Demand

- 25 MMTA in 10 years
- 4-6 world scale PDH plants per year
- China, India, SE Asia (demand & import independence) plus availability of LPG imports
- US, Middle East (feedstock advantage)
- Everywhere where there is a need or benefit to having on-site on-purpose propylene production for further growth or integration


KBR K-PROTM Propane Dehydrogenation (PDH) Technology



K-PROTM – Innovation based on Commercially Proven Technology

K-PRO™ Technology is based on the commercially proven K-COT™ technology and KBR's extended experience in FCC reactor design

KBR K-PRO™ is based on over 70 years of innovation and improvements

Catalyst Innovation that Enhance K-PROTM Performance

High Performance

High Stability & Activity
Favorable Selectivity
Low Catalyst Attrition

Special Formulation

No Precious Metals

Lower Coke Generation

Catalyst

Safe & Environment Friendly

No Chromium Containing Components

PDH Technologies Comparison Overview

	Other Commercial Technologies		
	PDH Technology 1	PDH Technology 2	PDH Technology 3
Reactor Type Regeneration	Moving Bed Continuous CCR	Fixed Bed Cyclic (in-situ)	Fixed Bed Cyclic (in-situ)
Comments	4 stacked radial flow reactors with inter- reactor heaters along with Continuous Catalyst Regeneration (CCR)	3-10 fixed bed reactors cycling between online, steam purge, hot air/reheat, evacuation/vacuum, reduction, back to online	Tubular fixed bed reactor/furnace design similar to Steam Methane Reforming (SMR) technology, 2 reactors in parallel alternating between on-line and regeneration
Catalyst	Pt-Sn on Alumina	Chromium Oxide (Chromia) on Alumina	Pt-Sn on Zn-Ca Aluminate
Conversion, %	30 - 40	45	30 - 40
Selectivity, wt.%	85.5 - 88	87	80 - 90
Reactor Pressure (bara)	1.4	0.5	5.0-6.0

KBR	
K-PRO™	
Orthoflow FCC Continuous	
Commercially proven KBR Catalytic Olefins Technology (K-COT [™]) reactor, including inherent continuous catalyst regeneration and heat input	
Proprietary (non-Chromium, non-precious metals/Pt)	
45	
87 - 90	
1.5	

R

E

Why K-PROTM – Our Value to You

CAPEX

20-30% lower capital investment

OPEX

10-20% lower operational cost

PRODUCTION

 Simple robust operations ensure reliability and higher on-stream time

OTHER BENEFITS

- Safe and environmentally friendly
- High performing catalyst
- Outperforms competition

K-PRO™ offers significant benefits compared to other commercially available technologies

Conclusion

- Ever changing feedstock and product pricing and ability to adapt greatly impacts profitability
- SCORETM provides ability to operate with different feedstocks at optimal conditions for each individual feedstock
- K-COTTM gives a high feedstock flexibility with higher propylene to ethylene product ratio
- K-PROTM is an innovative, lower cost option for on-purpose propylene production based on proven process technology

KBR fulfills the demand for innovative olefins technologies which provide flexibility leading to increased profitability

Questions

www.kbr.com/technologies