

COMPREHENSIVE ASSESSMENT OF STEAM CRACKERS FOR ENERGY INTENSITY IMPROVEMENT

S MAHESH KUMAR, NOOH ABDULLAH, DR. ABDULLAH AL QAHTANI

سابک خرااء

CONTENTS

- 1. Motive for Improving Energy Intensity
- 2. Energy Assessment Scope & Methodology
- 3. Gap Analysis & Opportunity Identification
- 4. Strategy to Pursue Fuel Gas Savings
 - Case studies
 - Energy Saving projects
- 5. SABIC Sustainability Performance

MOTIVES FOR ENERGY INTENSITY IMPROVEMENTS

Comply to Government Regulations

Increasing Cost Margin / Profit

Saudi Energy Efficiency Program

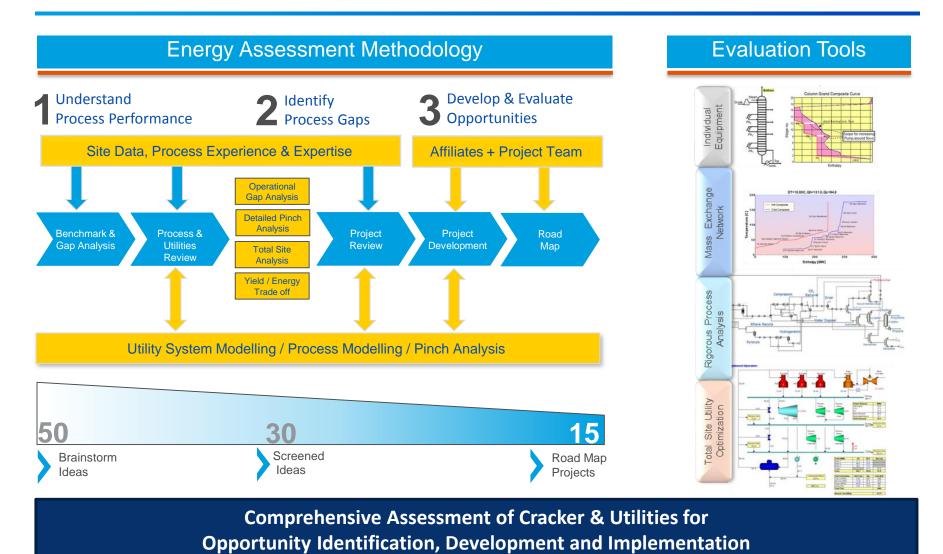
Improving Sustainability Index

Non Availability of Fuel for Expansions

STEAM CRACKER ENERGY ASSESSMENT SCOPE

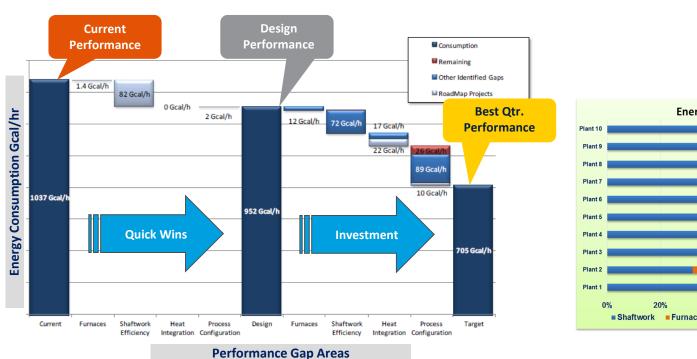
Crackers & Utilities formed Core of the Assessment in SABIC Integrated Petrochemical Complex

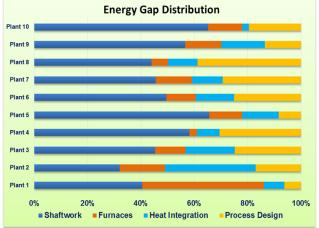
Energy Producers & Consumers ISBL Furnace CRACKING Compression **Process** Boilers Separation Fuel Drum Energy Other Consumers Processes Boilers Other Processes Other Processes


Measures for optimized Energy Consumption

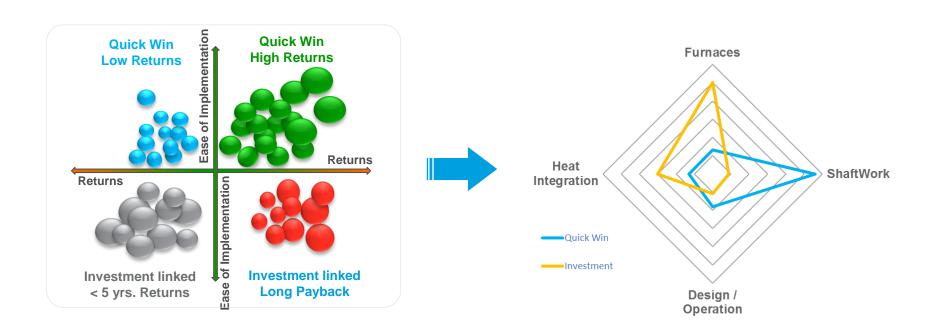
- **□ Optimization** of process sequence
- ☐ **Maximization** of equipment efficiencies
- ☐ **Reduction** of dilution steam ratio
- ☐ Increased suction pressure CGC
- ☐ Increased ethane *conversion*
- Boiler feed water preheating
- ☐ Reduced min. temperature differences
- ☐ *Minimization* of pressure drops
- Optimization of <u>heat integration</u>

Comprehensive Assessment of Petrochemical Complex Provides Opportunities for Energy Saving by Integration of multiple Units




CRACKER ENERGY ASSESSMENT PROCESS

ENERGY GAP DISTRIBUTION FOR CRACKER PLANT



Categorization of Energy Gaps in Process would help in Focusing on Improvements in specific areas that results in High Impact

OPPORTUNITY SPREAD FOR >10 PLANTS

Investment Linked Opportunities do Exist

However very few are Economically Feasible due to low fuel cost scenario

STEAM CRACKER ENERGY SAVING OPPORTUNITIES

Opportunities do exists to Improve Energy Intensity of Plants, but "Is it Economical Considering Fuel Cost in Oil rich Economies"

STRATEGIES TO PURSUE ENERGY SAVING OPPORTUNITIES

How to Justify Energy Savings if the Marginal Cost for Fuel Savings is low - 1.75 \$/MMBTU?

- What's really Impacted
- What process are affected if there is low Fuel
- What can I do if I get some additional Fuel
- Improving Sustainability helps in Improving Brand Value

Redefining Marginal Fuel Cost will Improve Investment linked Energy Saving Opportunity

REDEFINING MARGINAL FUEL COST: RECOVERY OF VALUABLE COMPONENTS FROM FUEL

- Fuel Grid Integration with adjacent refineries / chemical plants
- Export / Recovery of High Value Chemicals e.g, H₂ / Propane
- Every Kj of energy saved in cracker is evaluated against additional revenue by either selling H2 to refineries or recovering valuable paraffin's from offgas

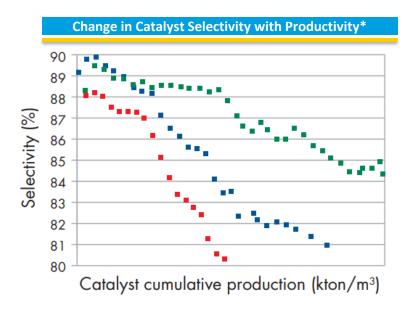
OPERATION FLEXIBILITY (EXAMPLE CRACKER OPERATION)

Low Fuel

- Adhering to quota will require Cracker to
 Increase cracking severity
- Increasing severity decreases the selectivity to HVC
- This has negative impact on plant economics

Additional Fuel

- Any Fuel gas saved provides opportunity to
 Operate cracker at desired severity (high HVC)
- Operating at lower conversion
- Fuel gas saved → Marginal cost of additional
 HVC produced



Energy Saved → Improving Operation Flexibility → Prod. of High Value Chemicals

INCREASING CATALYST SELECTIVITY

- Current Catalyst has low selectivity, part of feed is burnt and the energy is converted to Steam. Steam thus
 produced is used in the process elsewhere.
- High selective catalyst provides better production & minimizes reactant requirement.
- Steam Savings in other parts of the complex provides an opportunity to implement high selective catalyst

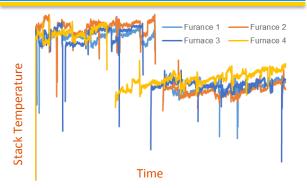
Energy Saved → Opportunity for High Selective Catalyst Low reactant consumption → Higher Productivity

OPTIMIZATION OF FIRED HEATERS

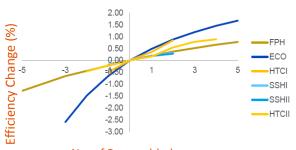
- Gross Energy Consumption ~ 97 %
- Net Energy Consumption ~ 45 %

SABIC Experience

- More than 150+ High Capacity Fired heaters
- Furnaces from all ages, 1980s to 2010s
- Thermal Efficiency: 88% 94%


Old Furnace

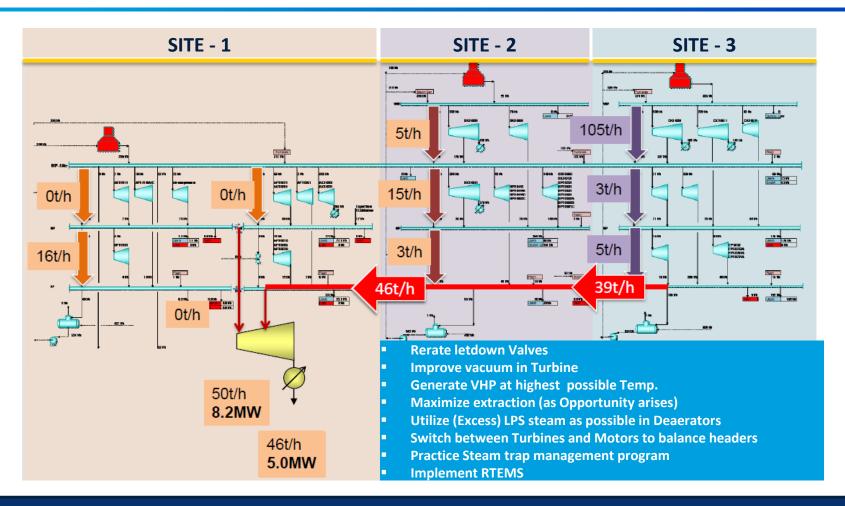
- Stack O2
- Stack Temp.
- Casing Losses
- Burner Maintenance


New Furnace

Stack O2

Convection section Cleaning

Model based evaluation for Revamping Furnaces



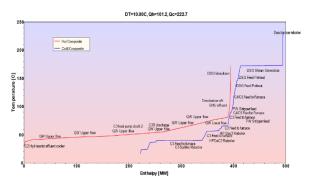
No. of Rows added

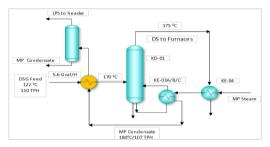
Comprehensive assessment helps in Identifying specific issues, developing tailor fit solutions for Increasing throughput & decreasing energy intensity

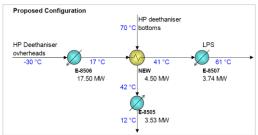
سابک خطاعت

SHAFT WORK OPTIMIZATION

Shaft Work, often overlooked, provides the largest Opportunity for Energy Saving in New and Old petrochemical Complex




HEAT INTEGRATION OPPORTUNITIES IN OLEFINS


Modern day Plants are heat integrated within their ISBL. Opportunities arises by integrating with adjoining plants.

Typical Pinch Opportunities

- ☐ Rerouting Stream
- ☐ Addition of New exchangers
- ☐ Increasing Area in Existing exchangers
- ☐ Replacing MPS with LPS
- ☐ Shift cryogenic utility levels from C2R to C3R

All Heat Integration opportunities needs investments & have low impact.

Most of these are economically infeasible due to low Fuel Cost

SUSTAINABILITY STRATEGY

- Corporate Sustainability KPI's
- Special Sr. Management sponsored programs in every affiliates /subsidiaries
- Continuous monitoring and reporting system to ensuring sustaining the benefits

SABIC Sustainability Targets

GHG Emissions Intensity

Energy Intensity

Water Intensity

Material Loss Intensity

Energy Saved = Achieving SABIC's Sustainability Goals (KPI's)
Improving Brand Value; Meeting Regulatory Targets; Social Responsibilities

سابک

SABIC SUSTAINABILITY PERFORMANCE 2017

OPERATIONAL KPI PERFORMANCE

9.3%

GHG EMISSIONS
INTENSITY

7.6%

ENERGY
INTENSITY

8.8%
WATER
INTENSITY

35.2%

MATERIAL-LOSS
INTENSITY

43%
REDUCTION IN FLARING EMISSIONS(1)

3.5 mmt
TOTAL CURRENT
CO, UTILIZATION